Ensemble Learning for Predictive Maintenance

Koordinator Högskolan i Halmstad - CAISR - Center for Applied Intelligent Systems Research
Bidrag från Vinnova 115 834 kronor
Projektets löptid november 2018 - februari 2019
Status Avslutat
Utlysning Individrörlighet för innovation och samhällsnytta
Ansökningsomgång Arbeta tillfälligt i annan bransch - innovation inom artificiell intelligens (AI)

Syfte och mål

The work has resulted in improved models for predictive maintenance, implemented through integration of several different techniques and using multiple data sources. The ensemble model created in this project, which combines classifiers from different data domains, leads to improved accuracy and recall for several different components. Combining the complementary features allows us to decompose a complex, difficult learning problem into easier sub-problems.

Resultat och förväntade effekter

The existing collaboration between Halmstad University and Volvo Group, in particular Volvo Trucks Aftermarket, has been strengthened significantly through this mobility grant. The knowledge exchange in both directions has lead to improved technical solutions which now allow for more precise estimation of the failure risk of various components.

Upplägg och genomförande

The project consisted of efforts attempting to answer two research questions. First, what are the constraints and challenges of integrating ensemble approach into existing model? Second, how diverse are individual models based on each data domain, and how could we improve this diversity among models? Both questions have proven valuable and provided important insights into the final developed solution.

Texten på den här sidan har projektgruppen själv formulerat. Innehållet är inte granskat av våra redaktörer.

Senast uppdaterad 27 oktober 2018

Diarienummer 2018-04348

Statistik för sidan