Du har inte javascript påslaget. Det innebär att många funktioner inte fungerar. För mer information om Vinnova, ta kontakt med oss.

Vi vill göra vår webbplats bättre för dig. Vi skulle därför uppskatta om du tog 1-2 minuter att svara på några frågor. Tyck till om Vinnovas webbplats

Big Automotive Data Analytics: SEnsor Modeling and Performance Analysis (BADA-SEMPA)

Diarienummer
Koordinator Volvo Personvagnar Aktiebolag - Active Safety & Chassis, PVV 1:2
Bidrag från Vinnova 7 000 000 kronor
Projektets löptid mars 2016 - maj 2018
Status Avslutat
Slutrapport 2015-04787eng.pdf(pdf, 567 kB) (In English)

Syfte och mål

The analysis of sensor data plays a crucial role to build highly automated and autonomous vehicles. Such analysis makes it possible to develop better sensor verification and accurate computer-aided engineering (CAE) simulations, and to better implement the active safety functions. The main research questions addressed by the project were related to improving ground truth, developing sensor models, and semi-, un-supervised data analysis. During the project, we have achieved the main goals and developed different analysis methods to improve the verification of AD.

Resultat och förväntade effekter

Findings are presented and discussed in different conferences, e.g.: 1- J. Florbäck, L. Tornberg, N. Mohammadiha, “Offline Object Matching and Evaluation Process for Verification of Autonomous Driving”, ITSC, 2016. 2- J. Martinsson, N. Mohammadiha, A. Schliep, “Clustering Vehicle Motion Trajectories Using Finite Mixtures of Hidden Markov Models”, submitted. 3. E. L. Zec, N. Mohammadiha, A. Schliep, “Modelling Autonomous Driving Sensors Using Hidden Markov Models”, submitted. 4. E. Karlsson, N. Mohammadiha, “A Statistical GPS Error Model for Autonomous Driving”, IV 2018.

Upplägg och genomförande

During the recent years, many companies have increased their efforts in developing autonomous driving. One important part of this is related to verification and validation. Machine learning ans statistical signal processing play an important role in this aspect and this project has been able to answer some of the open questions on which models are more suitable for such analysis but it has also shown some new challenges that were not clear from beginning. New projects and activities have to be planned to fully overcome c´such challenges.

Texten på den här sidan har projektgruppen själv formulerat. Innehållet är inte granskat av våra redaktörer.

Senast uppdaterad 8 maj 2017

Diarienummer 2015-04787

Statistik för sidan