Kvantitativ karaktärisering av nitrokarburerade drivlinekomponenter - Del 1: Förstudie
Diarienummer | |
Koordinator | RISE IVF AB - Avdelning Tillverkning |
Bidrag från Vinnova | 100 000 kronor |
Projektets löptid | augusti 2019 - november 2019 |
Status | Avslutat |
Utlysning | Forskningsinfrastrukturer - nyttiggörande och samverkan |
Ansökningsomgång | Industriella pilotprojekt för användning av neutron- och fotonbaserade tekniker vid storskalig forskningsinfrastruktur – våren 2019 |
Slutrapport | 2019-02580 _Volvo.docx.pdf(pdf, 284 kB) (In English) |
Viktiga resultat som projektet gav
The purpose of this project was to identify synchrotron- and neutron techniques for quantitative characterization of nitrocarburized powertrain components. This is vital to improve nitrocarburizing process control and tailoring to specific steel grades in the manufacturing of transmission and engine components. The project group concludes that the project objective is met, since 2D-XRD mapping in combination with nanoindentation is suggested for a pilot study.
Långsiktiga effekter som förväntas
The project has identified synchrotron 2D-XRD mapping as the most promising synchrotron technique to quantitatively characterize nitrocarburized powertrain components. We will pursue a proof-of-concept by applying for beamtime on nanoMAX at MAX IV. This beamline allows for time-resolved quantitative characterization in combination with mechanical testing using nanoindentation. Results of such pilot study will show how mechanical properties relates to generated microstructure by material and processing.
Upplägg och genomförande
The project was conducted by Volvo Trucks in collaboration with RISE. We have reported on LSRI-techniques that can be used to characterize properties/features of nitrocarburized powertrain-components. The project has considered tomography- and spectroscopy techniques, although concluded that diffraction techniques should be a priority. 2D-XRD mapping, for instance at nanoMAX (MAX IV), obtains a diffraction pattern from which the phase structure, lattice constant, and strain distribution can be analyzed and visualized.