Du har inte javascript påslaget. Det innebär att många funktioner inte fungerar. För mer information om Vinnova, ta kontakt med oss.

Validering av en AI-baserad app för omedelbar, GDPR-kompatibel kommunikation över språkbarriärer i sjukvården.

Diarienummer
Koordinator Mabel AI AB - Sahlgrenska Science Park
Bidrag från Vinnova 300 000 kronor
Projektets löptid november 2022 - september 2023
Status Avslutat
Utlysning Innovativa Startups
Ansökningsomgång Innovativa Impact Startups höst 2022

Viktiga resultat som projektet gav

The goal of the project was to develop and validate a MVP of an AI-based translation app for medical conversations. The unique aspect of our solution is the focus on privacy, which is of paramount importance in medicine. We conduct all our operations on the mobile device without the use of internet. This guarantees that the medical conversations stay private. During the project period, we successfully created an app that can be used for validation, and created significantly improved models for English and Ukrainian, enriched with medical data.

Långsiktiga effekter som förväntas

Improved Word-Error-Rate for speech-to-text of Ukrainian from 13% to 3.2%, by using a different network architecture, fine tuning to the medical domain, and using our own implementation of beam search. Filtered out low quality translation data, Russian words, profanities, and mismatched translations. With the help of LLMs and doctors, we collected simulated medical conversations, which were used to evaluate the new translation models. We achieved an accuracy improvement of 64% over existing English-Ukrainian models! We will make our Eng-Ukr model open-source!

Upplägg och genomförande

Any AI system is as good as the training data. We devoted much time to gathering and cleaning data, using both manual and automated approaches. We identified a bias in the open source data, where about 80% of the voices were of men aged 20-40, and hired a female Ukrainian refugee to evaluate the performance of our models on voices outside this demographic. She identified a discrepancy between the reported accuracy of the existing models and her voice, and detected Russian words in the translation. We trained new models with cleaned and augmented data, significantly improving our accuracy.

Externa länkar

Texten på den här sidan har projektgruppen själv formulerat. Innehållet är inte granskat av våra redaktörer.

Senast uppdaterad 16 november 2023

Diarienummer 2022-02293