Du har inte javascript påslaget. Det innebär att många funktioner inte fungerar. För mer information om Vinnova, ta kontakt med oss.

E!12759, WITURBISA, Chalmers

Diarienummer
Koordinator Chalmers Tekniska Högskola AB - Institutionen för Elektroteknik
Bidrag från Vinnova 999 889 kronor
Projektets löptid juni 2019 - maj 2023
Status Avslutat
Utlysning Eurostars – för forskande små och medelstora företag

Viktiga resultat som projektet gav

The project has contributed to mitigating collisions between bird and wind turbine on a species level, especially in terms of the ability to identify birds in wind farms automatically

Långsiktiga effekter som förväntas

+The classification of birds required images with bird at short range to perform optimally. +It was clearly demonstrated that classification of bird species is possible using deep learning models. +With higher resolution cameras, the method will provide significant contribution to classify birds in real-time for mitigating collisions between birds and wind turbines.

Upplägg och genomförande

+ A new bird detection model has been developed to deal with false-negatives by using a gigantic detector-YOLOv7E6E at resolution-1280 and false-positive by class filtering. + A significant amount of data has been collected, labeled, processed, and involved in training a more powerful classifier (ResNet18) to perform bird species classification. + Since the distribution of the collected data is long-tailed, new techniques were involved to balance the data during training and eventually achieved better results. + The overall classification accuracy is around 92%.

Texten på den här sidan har projektgruppen själv formulerat. Innehållet är inte granskat av våra redaktörer.

Senast uppdaterad 25 augusti 2023

Diarienummer 2019-01175