Your browser doesn't support javascript. This means that the content or functionality of our website will be limited or unavailable. If you need more information about Vinnova, please contact us.

Thermal and mechanical cycling of thin-ply composites for cryogenic applications

Reference number
Coordinator Linköpings universitet - Linköpings tekniska högskola Inst f ekon & industruell utv IEI
Funding from Vinnova SEK 322 029
Project duration November 2021 - September 2022
Status Completed

Purpose and goal

In this project we have investigated the effect of thermo-mechanical cycling of thin ply composites intended for cryogenic hydrogen storage applications. Quasi-static, mechanical fatigue and thermal fatigue tests were performed according to plan. Only a few matrix cracks were observed at very high load and very high number of cycles. Those cracks were initiated but not propagated along the width of the specimens. These results show that the selected thin ply composite, supplied by Oxeon, has the potential to become a viable material solution for future lightweight hydrogen tanks.

Expected results and effects

The test results showed that the material has a high damage onset level and therefore makes it an interesting candidate to make hydrogen composite tanks and pipes. The limited damage indicates that there are no obvious leak paths through the thickness that would compromise the functionality of the material in this application. The material durability under cryogenic operating temperatures looks promising. The project strengthens the research position of Sweden in the area and allows marketing of Oxeon’s material for hydrogen storage applications.

Planned approach and implementation

Suitable thin ply materials (fibre reinforcement and polymer matrix) were selected, and cross-ply composite laminates were manufactured by filament winding on a flat tool surface. The laminates were inspected for damage, and samples were prepared for testing. The selected materials were supplied by Oxeon. Manufacturing of composite laminates using filament winding, and sample preparation was done by RISE. Quasi-static, thermal fatigue, and mechanical fatigue tests were performed by LiU. Thermal fatigue tests were performed using liquid nitrogen (-196 °C).

The project description has been provided by the project members themselves and the text has not been looked at by our editors.

Last updated 15 November 2022

Reference number 2021-04315

Page statistics