Your browser doesn't support javascript. This means that the content or functionality of our website will be limited or unavailable. If you need more information about Vinnova, please contact us.

EnBlightMe! - an automated support system for potato late blight detection

Reference number
Coordinator Sveriges Lantbruksuniversitet - Inst för växtskyddsbiologi
Funding from Vinnova SEK 1 574 360
Project duration December 2016 - October 2019
Status Completed

Purpose and goal

In Sweden one fourth of all fungicides is used against potato late blight. EnBlightMe! aimed to automatically detect late blight in fields with the help of multispectral analysis, computer vision and drones via a prototype app to lower pesticide use. The app considered other useful input for decision-making such as weather and economy data. A demo-app was successfully developed and demonstrated in collaboration with IBM. Ideas were tested for precision agriculture, organic farming and breeding.

Expected effects and result

The work was communicated at an end conference and in numerous news features and articles. It was also captured as part of a peer-reviewed review article. The work led to the successful grant application NordPlant (www.nordplant.ord) and has strengthened the collaboration with the Nordic PPP project for plant phenotyping for breeding. We envisage further development around satellite analysis and computer vision to combat plant disease.

Planned approach and implementation

EnBlightMe! was initiated in 2017 with a DesignThink workshop led by IBM with invited researchers, potato growers and software developers. It had a clear focus on the users of the solution and their specific needs and formed the base for the project. Most of the work was then performed in the work package groups. Both MSc and project students were involved. In November 2018, the demo-app and results were presented with many of the participants during the initial workshop present.

The project description has been provided by the project members themselves and the text has not been looked at by our editors.

Last updated 14 December 2018

Reference number 2016-04386

Page statistics