Your browser doesn't support javascript. This means that the content or functionality of our website will be limited or unavailable. If you need more information about Vinnova, please contact us.

Our e-services for applications, projects and assessments (the eServices portal) close on Thursday 20 January at 4:30pm because of system upgrades. We expect to open them again on Friday 21 January at 8am the latest.


Reference number
Coordinator Chalmers Tekniska Högskola AB - Chalmers Tekniska Högskola Chalmers magasin
Funding from Vinnova SEK 4 236 701
Project duration November 2019 - October 2022
Status Ongoing
Venture Traffic safety and automated vehicles -FFI
Call Traffic safety and automated vehicles - FFI - spring 2019

Purpose and goal

The project´s objective is to extract data in collected video films, from previous data collection projects, classify behaviors and movements, to create an improved database. This database will help researchers to answer questions about both active and passive safety in vehicles. The database will also be used for validation of upcoming, new safety features around drivers´ attention in traffic.

Expected results and effects

The main result is an improved database of annotations from previously collected video on drivers, in data collection projects. The data set should be able to be used in future research in the field of road safety. The data set will also be used to validate new algorithms for detecting fatigue and distraction.

Planned approach and implementation

The method will use annotation on recorded data, followed by training of neural networks for the detection of interior sensing features in the datasets. New AI networks will be trained to provide eye gaze and head pose based on the facial recording. When the algorithms and training networks are found valid, a major data processing step is followed to run on the full dataset. Finally, the output of the processing can be used for either analysis by combining the extracted features with other vehicle data, or to be used for validation purposes of new algorithms.

The project description has been provided by the project members themselves and the text has not been looked at by our editors.

Last updated 30 November 2021

Reference number 2019-03095

Page statistics