Your browser doesn't support javascript. This means that the content or functionality of our website will be limited or unavailable. If you need more information about Vinnova, please contact us.

DIGICOGS: DIGital Twins for Industrial COGnitive Systems through Industry 4.0 and Artificial Intelligence

Reference number
Coordinator Mälardalens Universitet - Akademin för innovation, design och teknik, Västerås
Funding from Vinnova SEK 4 998 388
Project duration April 2020 - November 2023
Status Completed
Venture Strategic innovation programme for process industrial IT and automation – PiiA
Call PiiA: Digitalization of industrial value chains, autumn 2019

Important results from the project

The objective of DIGICOGS is to provide a digital twin that combines sensor information, AI and machine learning and big data analytics that underpin the new wave of the cognitive system.

Expected long term effects

Developed a DT for PTU manufacturing which is tested in industrial settings and provide good results to analyse the impact of materials on pinion and ring gear. Classification and prediction algorithms are developed for machine chip classification and chip-type prediction in control processes. There are several results have been achieved such as a report on ‘use-case, state of the art and survey analysis’; a survey paper on ‘Machine Learning Based Digital Twin in Manufacturing’; ‘Heuristic Approach for Cognitive Digital Twin Technology A Technical Report’.

Approach and implementation

För att uppnå målet överväger digicogs 4 arbetspaket WP1: Krav och industriella fallspecifikationer för digitala tvilling- och kognitiva system; WP2: Digital representation av verkliga tillgångar genom dataficering; WP3: Datautvinning och kunskapsupptäckt i digital tvilling; och WP4: Lärande och resonemang i prediktiv modellering för industriella kognitiva system. Resultaten presenterades i 6 tidskrifter, 8 konferensbidrag och en teknisk rapport.( http://www.es.mdu.se/publications?scope=id_project_549)

External links

The project description has been provided by the project members themselves and the text has not been looked at by our editors.

Last updated 9 December 2023

Reference number 2019-05322