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FFI in short 
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worth approx. €100 million per year, of which about €40 is governmental funding.  
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1. Summary  

Detecting and understanding driver behaviors in real-time for safety modeling develop 
complex tasks due to the multitude of feature parameters associated with the driver, the 
vehicle, and the surrounding traffic. The objective of this pre-study is to classify driver 
behaviors according to a standardized metric that can be utilized for assessing safety 
contexts, which are then used to dictate adaptive HMI functions. Within this project, we 
employ a comprehensive definition of context, which encompasses diverse data 
modalities and then consolidates them into aggregated driving behaviors (Biondi, Strayer, 
Rossi, Gastaldi, & Mulatti, 2017). The raw data encompasses various aspects related to 
the driver, the vehicle, and the ambient traffic, enabling the formulation of multiple levels 
of context abstraction that unveil higher-level characteristics and decision-influencing 
features. 
 
The detection of driver distraction relies on raw data obtained from onboard cameras and 
physiological sensors (Nees, 2021). Our Smart Eye project collaborator possesses certain 
levels of these solutions, which we proposed to further optimize in this pre-study, in view 
of other data sources. Along the vehicle and ambient traffic dimensions, the raw data 
sources are supplemented with CAN bus data, while ambient traffic use devices such as 
Lidar and GPS data. Both data sources are instrumented respectively by Autoliv and 
Viscando project partners, where Autoliv partners utilize the data fusion outcomes to 
infer driving HMI assistive functions such as speed, acceleration, and lane keeping as 
well as car-following gaps. The fusion process uses emerging Artificial Intelligence 
methodologies that are worked out by the University of Skövde project partner. This 
process consolidates driver and driving state features that are inherent to the 
physiological attributes of individual drivers and unique driving contexts that incorporate 
vehicle and traffic features. Vehicle dynamics information such as lane deviation and 
steering wheel motion contribute to the diagnosis of driving contexts, which can be 
utilized to estimate safety levels. Ambient traffic factors such as the volume and position 
of surrounding vehicles, can have a significant impact on driving safety, considering 
features such as congestion, traffic flow, following distance, intersection patterns, and 
speed differentials between lanes. 
 
This pre-study presents the concept of driving analytics, which instruments AI-based data 
analysis methodologies to enhance the accuracy of context detection for assessing safety 
levels. On-board sensors, including eye-tracking cameras, are employed to analyze the 
driver's visual distractions by extracting features through image analysis techniques. 
Through the application of machine learning algorithms, future ADAS systems recognize 
various driving patterns, that were hidden from previous traffic safety solutions. This 
includes the combination of driver distraction levels, as well as vehicle dynamics and 
ambient traffic to enable the derivation of more precise safety indicators. These indicators 
are then utilized for HMI functions. 
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2. Sammanfattning på svenska 

Det huvudsakliga bidraget från detta projekt är att ta fram utvecklingskriterier för ADAS 
utveckling i relation till olika trafikdatakällor för att producera och dela data om förarnas 
avsikter, beteende och trafikkontext, baserat på utveckling av metoder för 
informationsfusion för att skapa en medvetenhet om situationen, förutsäga dess 
utveckling inom en nära framtid och beräkna dess säkerhetsnivå. Data och resultat 
kommer att delas över ett molnanslutet fordon. Att kombinera information från olika 
datatyper och från flera fordon och infrastruktur gör det möjligt att få starkare bevis på 
den faktiska sanna situationen och dess utspel. Information om hur säker situationen är 
(kvantitativ säkerhetsnivå) och personliga körrekommendationer. denna säkerhets-
information är endast användbar om den presenteras för föraren på ett tydligt, intuitivt 
och icke-distraherande sätt. HMI-koncept kommer att utvecklas med en hög nivå av 
anpassningsförmåga i relation till olika personer och trafiksituationer. Detta projekt 
skapar en mer intuitiv interaktion mellan föraren och fordonets körstödsystem. 
 
Genom att använda sammansmälta data om andra trafikanters avsikter, den övergripande 
trafiksituationen och fordonsdynamik (för egna och andra fordon), kommer 
körstödssystem att skräddarsys till de specifika egenskaperna för att ge maximalt skydd. 
Förutom den kloka kombinationen av flera kontextuella data som ger nästa generations 
körstödsystem och de innovativa HMI-koncepten som förbättrar körupplevelsen i 
framtida fordon, automatiserar detta projekt också samspelet mellan dessa två 
komponenter. Körstödssystemet omvandlar data till evidensbaserade beslut medan HMI 
tillhandahåller gränssnittet genom vilket en förare förstår och agerar på dessa beslut. 
Nivån på HMI-interaktion anpassas således till de härledda sammanhangen som ligger till 
grund för besluten i körstödsystemet och anpassas ytterligare för att möta individuella 
förarprofiler. 
 
Detta projekt utvecklar nödvändiga förutsättningar för en processmodell som gör det 
möjligt för drivande stödsystem att vidta lämpliga åtgärder som svar på förändrade 
förhållanden. Användarbehov och preferenser ingår i denna process, som påverkar till 
exempel överlämningsaktiviteter till eller från körstödssystemet. Denna aktivitet kan ses 
som en utarbetad modell av befintliga operatörshändelsesekvensdiagram (OESD) som 
användes för att öka situationsmedvetenheten och säkerheten för körstödssystem. 
Förutom att ge situationsmedvetenhet kan OESD-data skapa en virtuell representation av 
miljön, vilket gör att HMI-designers kan skapa uppslukande skärmar för att utforska och 
interagera med miljön i realtid. Till exempel prediktiva displayer som kan förutse 
användarens behov vad gäller navigationshjälp när fordonet närmar sig en korsning. HMI 
kommer att varna föraren om den potentiella risken, med tanke på användarens avsedda 
väg genom korsningen, genom att uppmana föraren att se efter cyklister innan svängning. 
Den interaktiva displayen ger ytterligare säkerhetsinformation om avsikterna hos 
fotgängare, cyklister eller andra fordon i närheten, såväl som varuinformation som 
tillgängliga parkeringsalternativ, POI-information (intressanta platser) eller 
omvägsalternativ (som svar på trafikstockningar eller vägar). 
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Det kontextmedvetna körstödsystemet övervakar föraren, fordonet och den omgivande 
trafikinfrastrukturen för att reglera HMI-kontroller och justera informations-
presentationen. Till exempel kan mängden presenterad information skilja sig åt om 
fordonet är i autonomt läge eller körs i ett överbelastat område. Projektet använder nya 
datakällor från inbyggda kameror och fysiologiska sensorer för att sluta sig till 
förartillståndet (Engström et al., 2018; Galarza & Paradells, 2019; Nidamanuri et al., 
2021). Förartillståndsdata bekräftas med fordonsdynamik och omgivande trafikdata för 
att profilera beteendet hos egofordonet, såväl som andra fordon och fotgängare i 
närheten. Kombinationen av dessa datakällor är ett annat centralt fokus i detta projekt, 
som gör det möjligt för nästa generations förarstödssystem att förstå körmiljön för att på 
bästa sätt hjälpa föraren med informerat beslutsfattande och förbättrad körupplevelse. 
Även om vissa av dessa datakällor har betraktats som i silos, främjar detta projekt deras 
sammanslagning för att kvantifiera säkerhetsnivåer. Nedan finns möjliga användningsfall 
för sådan datafusion: 

• Förarstatus kan indikera distraktion, ouppmärksamhet eller trötthet. Dessutom kan 
fordonsdynamikdata stärka eller förfina dessa bevis med tanke på körfältshållning 
eller accelerationsmönster, särskilt om trafiken är lätt och inga faror finns i 
närheten. 

• Fordonsdynamikdata kan visa oregelbunden körning. Men förarens tillstånd 
indikerar tillräcklig uppmärksamhet på vägen, men väderförhållandena är dåliga. 
Körstödssystemet kan då aktivera HMI för alternativa rutter med mindre isiga 
fläckar, snödrivor eller översvämmade områden eller med bättre sikt. 

• Omgivningstrafikdata från infrastrukturbaserad mätning och realtidsrapportering 
från bilar kan härleda trafiktätheten och förstärka denna säkerhetskontext genom 
att överväga förarens tillstånd för att bestämma om man ska signalera försiktig 
körning eller om man ska föreslå bilföljande mönster efter en analys av pågående 
fordon dynamikdata. 

 
Partners utvecklar en specifikation av nya HMI-koncept och processen för att fånga 
användarnas behov i ytterligare HMI-anpassning och personalisering. Det handlar om att 
förstå de olika typerna av förare, deras körbeteenden och deras specifika behov och 
preferenser (Rydström et al., 2022). Denna information kommer att erhållas genom 
förarövervakningsexperiment, undersökningar, intervjuer, fokusgrupper och etnografisk 
forskning. När användarsegment har identifierats används detta sedan för att definierar 
användarscenarier som beskriver hur det nya HMI-konceptet kommer att användas i olika 
körsituationer. Dessa scenarier är baserade på målanvändarnas behov och preferenser, 
såväl som kapaciteten hos körstödsystemet, som i sin tur behöver specifika relevanta 
data. Enligt första sidans figur är det en nödvändig utveckling inom trafiksäkerhet att 
skapa system som är mer flexibla för att interagera med bilförarna och hantera olika 
trafiksituationer där information om trafiksäkerhet också kan användas av olika fordon. 
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3. Background 

The background is based on current research results within the general area of the levels 
of traffic safety. The project background areas are the use of traffic data, computational 
models, driver monitoring development, and driver interaction with driver support 
systems that improve traffic safety situations. According to FFI:s roadmap, this pre-study 
is directed towards the development of implemented sustainable solutions that are also 
accepted by users and society. This pre-study is supported by Autoliv, Smart Eye AB, 
and Viscando AB. These three companies are supporting a longer-term larger project that 
will be connected to this pre-study. The scientific basis of the project combines research 
from the areas of artificial intelligence (AI) and information fusion (IF) for the purpose of 
aggregating knowledge and fusing information to characterize contexts from a multitude 
of heterogeneous data sources. Driving contexts categorize multimodal data into 
aggregated driving behavior patterns. 
 
The safety concept has been previously developed and evaluated according to different 
traffic situations and how safety information can reliably inform drivers about different 
critical factors and risks in traffic. Our pre-study has used Hollnagel et al. (2015), Aven 
(2022), and Schöner et al. (2021) as important references for the concept and computation 
of safety scores. The different kinds of safety according to these authors provide a basis 
for constructing more flexible safety scores.  A recent article in The Guardian (Clarke, L. 
(March 27, 2022)) addressed the issue of how self-driving cars got stuck in the slow lane. 
One critical issue is the lack of AI systems to do what humans do, namely, to generalize 
from one scenario to the next. This is also stated as a problem with no solution for AI 
systems. The other major issue is the ability to handle rare traffic cases. Philip Koopman 
was one of the experts in the article, and he also has a recent publication, A Safety 
Standard Approach for Fully Autonomous Vehicles, (Koopman et al., 2019). One of the 
key topics that must be addressed is system-level safety metrics, which is what this pre-
study project will work on to create a specific and larger innovation FFI-project. 
 

4. Purpose, research questions and method 

For ADAS development, the interaction between the calculation of safety in traffic 
situations and drivers is necessary. The calculation of traffic safety needs to be 
communicated to drivers at a level of trust. A major question has to do with the key 
factors that contribute to high levels of trust. The interaction between the two work 
packages is therefore a major factor for ADAS. 
 
This pre-study project aims to create a basis for a traffic safety score that can be applied 
to different levels of autonomous vehicles AND be used in interaction with drivers of 
different ages, gender, and experience. The central question is the extent to which a safety 
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score can be trustfully relevant for human drivers and autonomous vehicles. There are 
work packages to this central question: 1) to determine the relevant data sources and 
methods to create dynamic safety scores according to different traffic situations, and 2) 
create relevant contexts to test driver interaction with the safety scores. An important 
method is to calculate a safety score for driving with ADAS and AVs, for its feasibility. 
The purpose is to use the results of this pre-study to prepare a larger project where we can 
create and test the dynamic safety scores that provide drivers and levels of autonomy with 
critical traffic behavior information. The work packages are presented further below. 
 
More specific aims related to the two work packages: 
WP1 
• What is a Safety Score?    
• How to leverage methods for evidence combination to infer a concise and 
meaningful driving context as a condensate of the heterogeneous weak evidence 
stemming from raw data?  
• What is an acceptable level of safety score confidence within ODD?  
WP2 
• Which HMI recommendations can create a sufficient level of trust for a safety 
score driving support system and infrastructure interactions? 
• How can trust be measured according to the behavior and comments of the 
drivers? 
 
All four partners collaborate in both WPs but there are different levels of collaboration 
among the WPs. The University of Skövde is the leader of both WPs, and Smart Eye is 
equally engaged in both as well. Autoliv is more highly engaged in WP2 whereas 
Viscando's emphasis is in WP1. 
 

Safety Score WP1 What is the safety score? 

Role: to contribute to the need 
for relevant data and safety 
indicators. 
University of Skövde 

 Literature review - determine the relevant 
traffic contexts.

 Methods for appropriate data analysis. 
 Identify key safety performance indicators. 

 
Smart Eye 
Viscando 
Autoliv 

 Identify current needs and potential 
contributions to the safety performance 
indicators.

 Provide necessary data and current 
solutions for different Operational Design 
Domains. 

Content: Safety score   Determine the quantitative risk analysis and 
its role in determining the safety score.

Method: Information Fusion  Determine the potential influence of relevant 
weak evidence that can be combined into 
actionable strong evidence for a specific 
driving context that allows for the calculation 
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of the safety score 

Delivery and evaluation  Suggest a method and process for creating 
a reliable safety score according to scientific 
national and international criteria.

Trust and Interaction WP2 The relation between safety score and trust? 

Role: to contribute to the need 
for relevant data, safety and 
trust indicators 
University of Skövde 

 Determine the relevant traffic contexts.
 Methods for appropriate data analysis. 
 Identify key trust interactive indicators. 

Smart Eye 
Autoliv 
Major  

 Identify current needs and potential 
contributions to the HMI factors in different 
traffic contexts.

 The role of human cognition in 
understanding different traffic contexts in 
relation to safety. 

Content: Safety score   How can trust be manipulated by different 
safety scores according to genders?

Method: HMI  How can trust be measured consistently and 
in relation to different traffic contexts?

Delivery and evaluation  Suggest a method and process for creating 
a trustful safety score according to scientific 
national and international criteria.

 
 

5. Objective 

The goal and potential of this pre-study project are empowering innovation for road 
transportation that is directed toward a sustainable society. The evidence framework to 
use is highly dependent on the task at hand, and how evidence should be combined might 
even be strongly dependent on the particular situation. This pre-study further investigated 
how the difference in existing variations of evidence theory might impact the calculation 
and usability of the safety score. Typical evidence frameworks that are available to be 
evaluated for this purpose are for example Bayesian and credal combination (Arnborg, 
2006; Karlsson et al., 2011), Dempster-Shafer theory (Shafer, 1976), Modified Dempster-
Shafer theory (Fixsen & Mahler, 1997), or the Transferable belief model (Smets & 
Kennes, 1994). 
 
Karlsson and Steinhauer (2013) have evaluated what is known as precise and imprecise 
high-level information fusion (HLIF) methods with respect to a simulated scenario. This 
methodology will be a key computational tool for creating valid and useful safety scores.  
The interaction between computational methodology for safety scores and driver 
behavior is an area of important development for driver behavior in relation to different 
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levels of autonomy. This is not just a computational issue but also an ethical and 
sustainability issue.

Figure 1 shows necessary data interactions (information fusion) between four main areas:
• traffic infrastructures
• external traffic interaction for vehicles and other road users
• internal vehicle behavior
• the development of driver monitoring for the driver understanding of the current and 

potential traffic situations.

A further area is the trust data results from driver support systems (ADAS). There is a 
current HMI study with Autoliv about the reaction time and trust comments. This study 
investigates the driver interaction with perceptual information about the traffic situation:
Haptic, haptic + auditive, haptic + visual info, haptic + auditive + visual.

Figure 1. The interaction between different data sources and traffic situations 
that need to be used for ADAS-driver interaction.

The interaction between these main areas is necessary to develop the levels of safety and 
autonomy for driver support systems. Driver behavior and interaction with driver support 
systems depend on “early” collaboration between algorithm development and human 
understanding of the purpose of safety level information and potential behavior in 
intention prediction to create a much more adaptive interaction between driver support 
systems and driver decision behavior.
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There is a need for data from connected vehicles (Ahmed et al., 2022) to increase the 
level of safety for driver support systems and interaction with drivers. Neural networks, 
deep reinforcement learning, and symbolic AI can provide low-level data 
implementations and high-level symbolic and rule-based implementations. 
 

6. Results and deliverables 

The results are presented from the two different WPs. The results from WP1 are 
computational methods as well as data sources and potential areas of connectivity 
between different traffic situations. The results from WP2 are within the context of the 
application of safey information/scores to HMI. 

WWP1 

As described above, to calculate a safety score that quantifies the safeness (or safety 
level) of a situation, a multitude of aspects within the current traffic situation need to be 
considered. These are for example, the road conditions, the weather conditions, the 
driver’s level of alertness, and the complexity of the traffic situation as a whole and with 
regard to each partaking vehicle, pedestrian, etc. specifically. While the road and weather 
conditions could be known by a system and the driver’s level of alertness can be 
measured by a driver monitoring system, the complexity of the traffic situation is difficult 
to assess. It includes the identification of all traffic participants at the scene and 
understanding their intentions and their interactions. 
 
We regard the task to establish a safety score of the situation to be an information fusion 
task. Where we describe information fusion as a research field that develops, deploys, 
and tests methods and techniques usable for the automatic or semi-automatic combination 
of data and information provided by different sources (see for example Steinhauer & 
Karlsson (2018)). The purpose of information fusion is to fuse the data and information 
into a coherent representation of the information. This is based on the idea that we 
usually can make better decisions given more information. While this is not necessarily 
always true, e.g., when information is conflicting, contradictory, deceiving, or very 
uncertain, it is generally a reasonable approach to consider all available information 
before concluding. Information fusion also allows us to infer (make explicit) new 
information from data that we did not know beforehand. Furthermore, the study of 
information fusion teaches us about uncertainty management methods with that the 
uncertainty within information can be handled appropriately when the information is 
fused. The methods studied within information fusion can stem from any other research 
area, such as mathematics, statistics, artificial intelligence, machine learning, 
optimization theory, etc. For any specific information fusion tasks, the best methods are 
chosen, adapted, and combined.  



11 

 
Analyzing the safety of a traffic situation is not an easy task. Humans are capable of 
doing it, and as an example, we can consider driving instructors that are required to have 
good situational awareness that allows them to judge if the driving student, in the given 
context of the traffic situation, will be able to handle the situation. The driving instructor 
knows what needs to be done, what can be missed by the student, what the possible 
consequences of all actions and inactions might be, also regarding the numerous different 
ways the other traffic participants might act or react. The instructor will evaluate their 
observations so that they can let the student drive on their own as much as possible, 
supporting them with information only when this is needed, but intervene just in time to 
avoid accidents or near misses when this becomes necessary.  
 
Ideally, a safety score would not only provide us with information on how safe the 
situation is but also with information on what should be done to improve the safety, e.g., 
slow down to avoid hitting a pedestrian or speed up in order to avoid getting hit by a 
truck. It could potentially, based on observed driver alertness level and driver gaze 
tracking, identify that elements in the traffic scene have not been taken into consideration 
and hence could entail potential danger. A system that checks if the driver is about to do 
the “right thing”, can be used to support the driver better. A collision avoidance system 
could at the last instance prevent an accident but can also be used to find out when to 
support the driver and when to intervene. It would be if the interactive ADAS could 
identify what the driver is missing and make them aware of that by prompting the driver’s 
attention accordingly. This could be further coupled with intention recognition systems 
that are capable of inferring the intentions of other traffic participants (for an overview 
see for example Vellenga et al., 2022), e.g., a pedestrian might be about to cross the 
street. Here the ADAS could inform the non-alert driver and ask them to watch the 
pedestrian who might want to cross. Once the driver adhered to that suggestion, the safety 
score of the situation is slightly increased. In the contrary case, where the driver is alert 
and capable of driving through a complex traffic situation, the ADAS system should still 
be aware of all the potential dangers but there is no need to inform the driver about them 
when they already pay attention to them (which could for example be monitored by an 
eye tracking device). In this case, driver monitoring and traffic scene monitoring together 
would lead to a high safety score for the situation. 
 
The trend within many application areas today is to use Deep Learning (DL) only; and, 
based on raw data from different and heterogeneous sources, develop a machine learning 
model, that provides a result, which in this case would be a safety score of the situation. 
However, using DL only bears a number of challenges. Firstly, there are many different 
choices that need to be made about the architecture of the Deep Neural Network (DNN) 
and several different DNN architectures might provide equal performance but are of 
different complexity. This is important because even if the computational power for 
onboard equipment in road vehicles has increased drastically in recent years, a DNN still 



12 

needs considerable resources and might not be feasible and fast enough to provide in-time 
information (Semenova, Rudin, & Parr, 2022).  
 
The second issue is the ability to explain the result. Not only do EU regulations require 
transparency (E Commission et al. 2021) but we also do not only want to calculate the 
safety score but also establish what needs to be improved in order to increase the safety 
score and to be able to prompt the driver accordingly. In the example above, it was the 
combination of the driver not being attentive enough in general and therefore missing the 
pedestrian who posed an immediate danger. The driver’s attention now needs to be 
directed toward the pedestrian; hence the system needs to be able to identify the lack of 
attention and the danger through the pedestrian. Reasoning like this can more easily be 
done on a higher level of abstraction, where objects and the relationships between them 
can be identified as well as what-if scenarios of the future development can be played 
out.  
 
A third and related issue is, of course, that neural networks need to be trained with loads 
of data, which is hard to obtain especially for the cases where the driving is of very low 
safety score and leads to accidents. Furthermore, even with a considerable amount of real 
data, machine-learning models lack robustness when it comes to rare or completely 
unseen situations (Hendrycks et al 2021). This leads to a next concern; the need for 
information about how certain or uncertain the system itself is about its prediction. 
Standard DL models cannot do that, but probabilistic DL approaches produce a 
probability distribution about the possible outcomes instead. And current research 
investigates if a so-called surrogate model can be used to estimate the uncertainty of a DL 
model (Vellenga et al, 2023) and might become useful in the future.  
  
Taken together, the power of DL is an important resource for many parts of the problem 
but is not perfect for all of them. Hence, we suggest an approach where we use an 
information fusion method known as evidence theory, to combine and analyze 
information that is provided by multiple other methods, each being the best possible 
method for the respective task. For example, a driver monitoring system establishes the 
driver alertness level using a DL approach, the objects in the traffic scene are identified 
by their respective object identification and object tracking methods, e.g. using 
convolutional neural networks (CNN) for image classification, the possible intention of 
these objects are inferred using the respective intention recognition methods (for an 
overview of those see for example Vellenga et al, 2022), etc. The results of these separate 
methods are then translated into pieces of evidence, e.g., driver alertness, pedestrian 
intention, etc. and these are then combined with an appropriate evidence combination 
rule. Two important features of this are: that evidence will be provided as a distribution 
over all subsets of possible states and that the uncertainty within the evidence 
distributions can be measured and traced and it hence can be identified where the 
uncertainty arose from (e.g., Steinhauer & Karlsson, 2013). This will provide the basis 
for the ADAS system to know what help needs to be provided to the driver in the specific 
situation. Note that in evidence theory, the case of not knowing can be expressed, which 
is not possible in for example Bayesian approaches. To be able to say “I don’t know” will 
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be important in order to cover situations where the system is not trained, e.g., rare cases 
or edge cases. 
Here are a couple of key questions and suggested answers that will be used to further 
develop the safety information and the interaction with drivers. 
 
What is a Safety Score? 
A measure of a driver's safety behavior and performance 
Calculated using telematics data: 
Speed, acceleration, braking  
Adherence to road safety guidelines 
Our proposal: factor-in driver state and infrastructure data 
 
Why do we need it? 
Tesla uses it for driver coaching through its Tesla Mobile App:  
Drivers see real-time scores 
Specific events: e.g., hard braking or abrupt acceleration 
Personalized feedback and recommendations to improve a safety score  
Drivers become more aware of their driving habits.  
 
ADAS "understands" a driver's behavior and adjusts interventions accordingly, e.g., to: 
Determine when to intervene with lane keeping  
Adjust car following distance or ACC speed 
Emergency brake 
Blind spot monitoring 
Trigger HMI 
 
Safety Score for Lane Keeping: 
Safety score as a reference to intervene with lane keeping: 
Vehicle data: steering angle, acceleration  
Driver state: fatigue, drowsiness or distraction levels 
Infrastructure: Vehicles in adjacent lanes 
 
Rules of Engagement: 
If safety score < threshold à Level 1 Warning  
If safety score continues to drop à Level 2 Warning (HMI) 
If safety score continues to drop à ADAS corrects vehicle position 
 
Safety Sore – Car Following & ACC 
Safety score to avoid car-following collisions: 
Infrastructure data: poor weather, reduced visibility, slippery road, changes in traffic 
flow, distance with lead vehicle, behavior of lead vehicle  
Driver state: fatigue, drowsiness, distraction, substances, or anxiety levels 
Vehicle data: acceleration and deceleration rates 
 
Rules of Engagement: 
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If safety score < threshold à Level 1 Warning 
If safety score continues to drop à Level 2 Warning (HMI)
If safety score continues to drop à ADAS increases the distance or adjusts speed

How to Compute Safety Score:

Manual driving (SAE L1)
If safety score < threshold -> Level 1 Information for corrective maneuver (HMI)
If safety score continues to drop or be below threshold  -> Level 2 Warning (HMI)
If safety score continues to drop -> ADAS activates and corrects vehicle position 

ADAS ACC active (SAE L2, L3?)
If safety score < threshold -> ADAS corrects headway 

Description of safety score:
As a safety score can be applied in different ways like car sales the TWEAKS project has 
instead defined a real-time safety score that will benefit the driver or the automated 
vehicle in many driving scenarios.

A Real-Time Safety Score (RTSS) is a dynamic numerical or categorical representation 
of the safety status of a vehicle during operation. It provides instantaneous assessment 
and feedback based on a multitude of data inputs, including driver behaviour, vehicle 
condition, environmental conditions, and situational factors like traffic congestion and 
weather.

Data
Driver
Vehicle

Speed
Acceleration

Gap
Lane

Normalization
Features

Classification

Decision Tree
KNN
SVM

Distraction

Safety Score

Infrastructure

Unsafe Driving Safe Driving 
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The score is generated by a complex algorithm that takes in raw data from various 
sources, processes and analyses the data, and then outputs a score that reflects the current 
level of safety. The exact calculation method can vary greatly depending on the specific 
design of the system, but the general principle is to assess risk and safety in real-time. 
    
The Real-Time Safety Score can be used in several ways: 
Driver Feedback:  
The most immediate use of the RTSS is to provide drivers with feedback on their 
behaviour and the safety of their current driving conditions. For example, if a driver is 
following too closely to the vehicle in front, the RTSS could decrease, and the driver 
could receive a warning or suggestion to increase their following distance. 
  
Safety Improvement:  
Over time, drivers can use their RTSS to identify patterns in their driving that are unsafe 
and work to improve their habits. This could lead to safer driving overall and a reduction 
in accidents. 
  
Insurance Pricing:  
Insurance companies could use the RTSS as a factor in pricing their auto insurance 
policies. Safer drivers, as evidenced by a higher RTSS, could receive lower rates. 
  
Fleet Management:  
For companies that manage fleets of vehicles, the RTSS can provide a way to monitor the 
safety of their fleet in real-time. They could identify drivers or vehicles that are 
consistently unsafe and take corrective action. 
  
Autonomous operation: 
The RTSS could serve to evaluate the safety of their vehicles under different conditions, 
providing valuable data to guide the handling of the vehicle in real time. 
  
The Real-Time Safety Score provides a quantitative measure of safety that promotes safer 
driving habits for both manual and autonomous driving, provides valuable feedback for 
drivers and fleet managers, and contributes to the development of safer vehicles and 
roadways. 
 
Method: 
Collect odds ratio 
The method on how to transition from sensor data to odds ratios is a complex task 
requiring knowledge in data science, statistics, and a thorough understanding of the 
underlying physical phenomena the sensors are measuring. Follows an example of how 
this process could work: 
  
Sensor Data Collection:  
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The first step is gathering sensor data from the vehicle. These can include data about 
speed, engine status, tire pressure, fuel level, and driver behaviour data collected from in-
vehicle cameras, as well as external factors like weather and traffic conditions collected 
from external sensors and V2X communication. 
  
Data Preprocessing:  
Raw sensor data usually requires cleaning and preprocessing to ensure it's usable. This 
step might include dealing with missing data, handling outliers, normalizing data, etc. It's 
also essential to timestamp the data so that it ca§n later be correlated with specific events 
or conditions. 
  
Feature Extraction: 
Features are specific measurable variables that can be used in your analysis. For instance, 
if you have a camera aimed at the driver, you would need computer vision algorithms to 
extract features like "driver's eyes closed" or "driver not looking at the road." 
  
Correlation with Events:  
Now that you have your features, the next step is to associate these with certain outcomes 
or events. These events can be near-misses, hard braking events, actual crashes, etc. To 
do this, you'll need data about when these events occurred, which could be obtained from 
onboard vehicle systems, insurance reports, police reports, etc. Then, you can compare 
the features you've extracted with the occurrence of these events. 
  
Statistical Analysis:  
A statistical analysis is performed to establish the relationship between features and 
outcomes. This is where odds ratios come into play. An odds ratio is a measure of 
association between an exposure and an outcome. The OR represents the odds that an 
outcome will occur given a particular exposure, compared to the odds of the outcome 
occurring in the absence of that exposure.  
For example, you might find that when the feature "driver's eyes closed" is present, hard 
braking events are twice as likely. This would give you an odds ratio of 2.0 for that 
feature. 
  
Model Development: 
 Using these odds ratios, you can develop a predictive model that takes the current sensor 
readings, applies the odds ratios to the relevant features, and produces a real-time safety 
score. This model might be something simple like a weighted sum, or it could be a more 
complex machine learning model. The important thing is that the model incorporates the 
odds ratios you've calculated to weight the importance of different factors. 
  
Validation & Calibration: 
Lastly, the model should be validated with separate data to ensure its reliability and 
accuracy. Calibration might be necessary to align the model's outputs with real-world 
observations. 
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This is a simplified view of the process, and actual implementation can be much more 
complex. It requires skills in data science and software development, as well as a deep 
understanding of the vehicles, sensors, and conditions you're working with. 
 
Evidence Theory: 
Evidence theory, sometimes better known as Dempster-Shafer theory (Dempster 1969; 
Shafer 1976) is a framework that is able to deal with uncertainty in the form of non-
specificity and discord. Within this theory it is possible to express uncertainty regarding 
an unknown random variable X for a given frame of discernment Ω. This random 
variable is defined by a mass function m:  

 
Any subset A of elements of Ω describes a focal element whenever its mass m(A) is non-
zero. In addition to the mass function m, there are also the belief and the plausibility 
function, that are based on m defined as (Shafer 1976): 

 
The belief function Bel states to what extend A is supported by evidence whereas the 
plausibility function Pl states the degree to that A is not contradicted by evidence. Hence, 
belief and plausibility can also be described as the upper and lower bound for the 
probability of A, which means that the actual probability lies in between the belief of A 
and the plausibility of A i.e.: 

 
Through application of a pignistic transformation a single probability value for a focal 
element can be obtained (Smets and Kennes, 1994). 

 
We suggest that the results obtained from the different sub-systems (such as driver 
support, intention recognition for each object in the traffic scene, weather condition, etc.) 
will be obtained using the best possible method for them and will then be used to 
establish a mass distribution for possible safety score. For example: Let the frame of 
discernment be the safety score of the situation as Ω = {low, medium, high}. Then each 
information source will provide a mass distribution over Ω, which we would call weak 
evidence. These weak evidences can then be combined with an evidence combination 
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rule into a combined evidence (strong evidence.). There are different ways of combining 
evidence and it is our statement, that depending on what information is combined at any 
step of the combination process, we need to choose the correct evidence combination 
method. The most well-known evidence combination operator is Dempster’s rule of 
combination (Dempster, 1969) and will combine the evidences expressed by two mass 
functions m1 and m2 as:  

This combination operator is commutative and associative (Dempster, 1969). However, it 
has the problem that it is undefined for the case where the conflict between the two mass 
functions is is zero. The literature, e.g. (Zadeh, 1984) provides examples where this 
operator hence yields counter intuitive results but Haenni (2005), has shown that there are 
ways to handle this problem. Furthermore, there are many alternative combination rules 
(e.g. Sentz and Ferson, 2002). What combination rule to choose will depend on the 
specific task. 
 
The uncertainty that is implicit within a mass function can be measured (Klir and Smith, 
2001). One example is the aggregated uncertainty, AU, defined by (Harmanec and Klir, 
1994), which also fulfills all the requirements for such a function that have been 
established by Harmanec and Klir (1994).  

 
 
As the name suggests, the aggregated uncertainty can be divided into measures for non-
specificity and discord as described by Klir (2003). 
 
How the mass functions are to be established for each information source needs to be 
established for every information source separately. It might be the judgement of a 
human expert that can be coded into an algorithm or it might be a machine-learning 
model that is trained by a multitude of examples. It is also possible to use an algorithm 
based on human expertise as a starting point and baseline model and then develop 
machine-learning models that will achieve better accuracy. 
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WWP 2 

Safety Score Based HMI Personalization 
Deliver custom tailored interaction based on each specific driver score 
Reflect driver needs in personalization decisions using scoring interface 

Adapt the vehicle’s HMI elements and interaction paradigms to best fit a 
particular driver, given the context driven by the score 

Use score to accommodate passengers by adapting HMI elements over all contexts 
 
The use of safety score can be dependent on the autonomous level: 
  
Manual driving (SAE L1) 
If safety score < threshold -> Level 1 Information for corrective maneuver (HMI) 
If safety score continues to drop or be below threshold  -> Level 2 Warning (HMI) 
If safety score continues to drop -> ADAS activates and corrects vehicle position  
  
ADAS ACC active (SAE L2, L3?) 
If safety score < threshold -> ADAS corrects headway 
 
Trust and interaction 
The Human-Machine Interface (HMI) plays a crucial role in facilitating effective driver 
interaction with driver support systems. Here are some of the most important HMI factors 
for ensuring successful interaction: 

1. Clear and Intuitive Information Presentation: The HMI should present information 
in a clear, concise, and easily understandable manner. Visual displays, auditory 
cues, and haptic feedback should be designed to convey relevant information 
about system status, warnings, and interventions without causing distraction or 
confusion. 

2. Contextual Awareness: The HMI should provide contextual information to help 
drivers understand the system's current mode of operation, its limitations, and its 
intended actions. This could include displaying the system's status, indicating the 
availability of support functions, and clearly communicating when the driver 
needs to assume control. 

3. Consistency and Standardization: Consistency in HMI design across different 
driver support systems and vehicles promotes familiarity and ease of use. 
Standardized symbols, colors, and terminology help drivers quickly grasp the 
meaning of information presented, reducing cognitive load and potential 
confusion. 

4. Timely and Relevant Alerts: Alerts and warnings should be timely, well-timed, 
and directly related to the driving situation. They should be designed to capture 
the driver's attention without causing undue stress or distraction. The HMI should 
prioritize and communicate critical information effectively, helping drivers make 
appropriate decisions and take necessary actions. 
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5. Customization and Adaptability: Allowing drivers to customize certain aspects of 
the HMI can enhance usability and driver satisfaction. This may include 
adjustable display settings, volume controls for auditory feedback, or 
personalization options based on individual preferences or needs. The HMI should 
also adapt to different driving situations, dynamically adjusting the information 
presented based on the current context. 

6. Training and Familiarization: Providing adequate training and guidance to drivers 
on how to effectively interact with driver support systems is crucial. Drivers 
should be educated on the system's functionalities, limitations, and proper usage. 
This training should emphasize the HMI features and how to interpret the 
information presented, ensuring drivers are confident and capable of utilizing the 
system correctly. 

7. Reducing Distractions: The HMI should minimize distractions and maintain 
driver focus on the driving task. This includes designing the HMI to avoid 
excessive information overload, intrusive alerts, or unnecessary visual clutter. 
Clear prioritization of information and minimizing unnecessary interactions can 
help reduce cognitive demand and support safer driving. 

8. User Feedback and Evaluation: Collecting user feedback and conducting usability 
evaluations can help identify areas for improvement in the HMI design. User-
centered design principles should be employed to iteratively refine the HMI based 
on driver input and real-world usage data. 

By considering these important HMI factors, driver interaction with driver support 
systems can be optimized, leading to better understanding, effective utilization, and 
improved overall safety on the road. 
 
 
Experiment testing the possible differences between the use of haptic information to 
drivers. 
This experiment was done by two final year students within the User Experience 
Education Program. Paul Hemeren was their supervisor. They collaborated with Autoliv 
to experimentally test different combinations of haptic information as an interaction with 
drivers. Here is the abstract of the article and the link to the complete article. It is 
important to emphasize that even though the results were not significant, there was a clear 
pattern that suggests an effect of haptic information. There were only 10 participants in 
each of the four conditions, which was the most that could be used given the time frame 
for the project. 
 
Abstract: 
As vehicles become increasingly automated, it is important to have a functioning 
collaboration between the driver and the autonomous vehicle. In the case of semi-
autonomous vehicles, the driver is not completely disengaged but still bears responsibility 
for driving. Since only certain functions are automated, the vehicle needs to be able to 
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give the driver clear feedback about the current driving situation and prompt the driver 
when he or she needs to resume control of the driving again. 
 
One such type of feedback is anti-collision warning systems, where the vehicle emits 
warnings to prompt the driver to act and avoid an accident. Such type of warning can be 
of haptic, visual, or auditory modality. Previous studies show that there are several 
advantages to using haptic feedback. This study describes, based on retrieved literature 
and a participant survey in a driving simulator, the effect of haptic feedback on the 
driver's reaction time in frontal collision warnings. It is tested as its own modality as well 
as in combination with visual and auditory feedback. 
 
The result shows that the driver's reaction time is shortest when warning with haptic 
feedback as its own modality. However, the results were not significant, as the difference 
in the mean values between the groups was not large enough to be generalizable. It is 
deemed important to further study in future investigations how haptic feedback affects 
the driver's reaction time, as a separate modality as well as in combination with visual 
and auditory feedback, in semi-autonomous vehicles. 
 
Online link: 
http://his.diva-portal.org/smash/record.jsf?pid=diva2%3A1773990&dswid=-4516 
 
Use Cases  
Use cases are critical contexts to test both WP1 and WP2. Driver state and driver 
monitoring are important traffic safety issues which are currently being addressed 
through regulatory requirements such as EU’s General Safety Regulations. While these 
systems and requirements are focused on the current state of the driver during the driving 
task, their activity history, sleep history etc. plays an important role in how these states 
would manifest. Research projects such as COPE and DrivER approach driver 
monitoring using consumer health tracking devices such as smartwatches and ECGs. 
These can also be important sources of data for the driver’s activity and rest history and 
can supplement the real-time driver state detection which happens during the drive. A 
safety score can be used as the basis for the driver monitoring, where the activity and rest 
history contributes to the score. This can also support with building and maintaining trust 
with the recommendations presented by the vehicle’s HMI.  

This use case can be further investigated in monotonous, highway driving where there is 
an increased risk of boredom and sleepiness. A safety score built on evidence theory, in 
this case, which is connected to the driver’s activity and sleep history could present a 
more convincing recommendation to the driver to take a break. The recommendations can 
be made more interesting to the individual driver based on their preferences, for instance, 
a driver returning from a weekend of skiing is likely motivated to return home the same 
day to be able to go to work the next day. The algorithm and HMI can be present 
recommendations which the driver is most likely to comply. The actual perception of 
such recommendation needs to be evaluated in a study.  
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This approach can also be used to detect hands-on wheel and hand position in a more 
robust and fool-proof manner. Since the algorithms are taking into account what is 
happening inside and outside the vehicle, these hands-on detection systems can be 
designed to be context-dependent and demand drivers’ to hold the steering wheel when it 
is most important.  

The next use case for evidence theory-based safety scores are for the detection of sudden 
sickness (such as strokes or heart attacks while driving) and post-crash care. If evidence 
theory-based safety score can be standardized with medical triages, this can be used to 
inform emergency medical personnel and the nearest hospital of the state, criticality, 
vitality of the victims, etc. This could also be used to understand pre-crash factors such as 
driving under the influence of alcohol or drugs.  

Safety Scores can be used to clarify the intention of the driver and vehicle when using 
ADAS such as lane-keep assist or automated driving functions such as traffic jam assist. 
Handover of the driving task from automated driving to an unwilling driver could be 
made safer through this, as this approach provides the driver with an assessment of the 
current safety level of the context and is based on the driver’s current state and ability to 
respond to the request. If the driver is unable to respond in an appropriate manner, either 
an escalation strategy can be employed or a minimum risk strategy such as stopping can 
be executed. The evidence theory-based algorithm can also be used to complement the 
vehicle’s ability to recognize that it is approaching its system limits, thus in an ideal 
world, reducing the risk of silent failures of driver support systems. Another aspect of this 
system is to tune the operating parameters based on the drivers’ preferences, for example, 
a Lane Keep Assist can position the car either in the center of the lane or in a more 
defensive position towards the right edge. The system can also be designed to interpret 
the actions of other road users, such as an oncoming vehicle flashing lights at the vehicle. 
At an aggregated level, these systems can be designed to communicate with other 
vehicles (V2V) to forecast traffic flow patterns and offer drivers better route options.  

7. Dissemination and publications 

77.1  Dissemination 

How are the project results planned to 
be used and disseminated?  

Mark 
with X 

Comment 

Increase knowledge in the field X This increase in knowledge is the next phase of the 
interaction between drivers and driver support 
systems. This is the necessary next stage where 
computational modeling requires driver monitoring. 

Be passed on to other advanced 
technological development projects 

X These results will be used to propose a larger 
project to work much longer to do experiemtal 
controls and applications. 

Be passed on to product development 
projects 

X This is also a critical necessary factor given the 
necessary interaction between drivers and driver 
support systems. 
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Introduced on the market   
Used in investigations / regulatory / 
licensing / political decisions 

X This project builds on previous investigations and 
will also have as goal to contribute to further 
investigations within traffic safety. 

 

77.2  Publications 

This pre-study project did not have publication as a concrete goal since the purpose was 
to use previous research and interaction among different industries to create a suggestion 
for the next level of safety information development and interaction with drivers. Next 
step is to use the results of this pre-study to create more concrete experiments and 
applications together with industries and academic science projects. Despite the 
interesting results from the student project, there needs to be further testing to support the 
scientific suggestions in this project. 
 

8. Conclusions and future research 

Driver’s role: Suggested areas of important driver tasks: maintaining control of the 
vehicle, obeying traffic laws, staying attentive, and making informed decisions based on 
the current driving conditions. 
 
Clear basis for a system's role: The system's role refers to the functions and capabilities 
of the vehicle's onboard systems and technologies designed to support the driver and 
enhance safety. This includes advanced driver assistance systems (ADAS), autonomous 
driving features, and vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) 
communication systems. The clear basis for the system's role involves defining the 
system's functions, limitations, and how it interacts with the driver to ensure a safe and 
reliable driving experience. 
 
Level of connection in the vehicle: The level of connection in the vehicle refers to the 
extent of connectivity and communication capabilities within the vehicle itself. This can 
range from basic connectivity for entertainment purposes to advanced connectivity 
enabling real-time data exchange with external sources, such as cloud-based services, 
navigation systems, or traffic management systems. The level of connection affects the 
availability of up-to-date information and the vehicle's ability to provide alerts, warnings, 
or assistive functions to the driver. 
 
Operative Design Domain (ODD): The Operative Design Domain (ODD) defines the 
specific operating conditions, environments, and scenarios in which a particular vehicle 
or automated driving system is designed to function safely. The ODD encompasses 
factors such as road types, weather conditions, speed ranges, and geographic limitations. 
Describing the ODD involves specifying the boundary conditions and constraints within 
which the vehicle or system can operate safely and effectively. 
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Real-time method for detecting and judging a traffic situation: A real-time method 
for detecting and judging a traffic situation involves continuously monitoring the 
surrounding environment, collecting relevant data, and analyzing it to assess the current 
traffic conditions and potential hazards. Here's a description of such a method: 

1. Sensor Data Acquisition: Utilize various sensors, such as cameras, radar, lidar, or 
vehicle-to-vehicle communication, to gather data about the surrounding traffic 
environment. 

2. Data Fusion: Combine and process the data from multiple sensors to create a 
comprehensive and accurate representation of the traffic situation, including the 
positions, velocities, and intentions of other vehicles, pedestrians, and infrastructure. 

3. Perception and Object Recognition: Apply algorithms and models to interpret the fused 
sensor data and identify relevant objects and their attributes, such as vehicles, pedestrians, 
traffic signs, and road boundaries. 

4. Situation Assessment: Analyze the recognized objects, their dynamics, and the overall 
traffic conditions to assess the current situation, including the presence of potential 
hazards, traffic congestion, or critical events. 

5. Decision-Making: Based on the assessed situation, make real-time decisions regarding 
appropriate actions or maneuvers to ensure safety and efficient traffic flow. This may 
involve adjusting speed, changing lanes, yielding, or taking evasive actions. 

6. Execution: Implement the decisions by controlling the vehicle's acceleration, steering, 
and braking systems to carry out the planned actions and respond to the changing traffic 
situation. 

A real-time method for detecting and judging a traffic situation should be dynamic, 
adaptable, and able to handle complex and rapidly changing scenarios. It relies on 
accurate and reliable sensor data, sophisticated perception algorithms, and robust 
decision-making processes to provide timely and appropriate responses to the traffic 
environment. 
 

9. Participating parties and contact persons  

 
The University of Skövde has led and managed this pre-study. Paul Hemeren (Associate 
Professor in informatics, male) has managed the project together with Yacine Atif 
(Professor in informatics, male), and Joe Steinhauer (Senior Lecturer and Researcher, 
female). All three actors are active traffic safety researchers from complementary areas 
such as computation, interaction and experimentation. 
 



25

Autoliv Research (Johan Karlsson and Tejas Chandran) has focused on the development 
of the utility of a safety score and its relevance and trust for the drivers. This is in a sense 
related to a current EU-project (Mediator) which intelligently assesses the strengths and 
weaknesses of both the driver and the automation and mediates between them, while also 
taking into account the driving context (Ahlström et al., 2021). The trust of different 
levels of automation is related to driver behavior. Trustworthy safety scores can play a 
significant role for different levels of autonomy.

The focus for Smart Eye AB (Henrik Lind and Svitlana Finér) has been directed towards 
the collection of driver behavior factors that can contribute to and be influenced by safety 
scores. The collaboration between the companies in this pre-study project will provide the 
basis for the role that different data sources, computations and human-machine 
interaction have in increased traffic safety and trust for safety scores.

Viscando AB (Yury Tarakanov) contribute to the use of gathered naturalistic traffic data 
as well as the need to create new databases in order to create a basis for safety scores and 
an interaction with safety scores. Viscando contribution: 

objective, large-scale traffic movement and interaction data for situation understanding 
and traffic behavior prediction.
Reference for expected/confusing, safe and unsafe behaviors in traffic – without driver 
bias
Useful for both ADAS and AD
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