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1 Summary

Data collected from test vehicles during realistic driving conditions is important for the
development and validation of new vehicle functions, for example advanced driver sup-
port systems (ADAS) and autonomous driving (AD). In particular, the increased use of
machine learning and the vast variety of traffic situations to be covered increases the need
for data. When data has been collected, the next challenge is to actually find the specific
data that is of relevance for the development and validation activities to be performed.
For this type of development, specific traffic scenarios, often referred to as events, are of
specific interest. Developers may be interested in events like “a car stopped at a zebra
crossing when a bicycle passed” or “a car left the highway on an exit ramp”. Finding this
kind of specific events in large amounts of unstructured driving data may be like finding
a needle in a haystack. This project has therefore been focused on developing a method
for defining specific traffic events, aiming at making such events efficiently searchable in
large amounts of high-resolution naturalistic driving data that has been collected from a
large number of vehicles in the field.

The project work was divided into four main work packages. First, based on a review of
some previous projects and project workshops, a method was developed for defining
complex traffic events and decomposing them into event components. Within the event,
the different actors, actions, objects and conditions are identified. Secondly, to enable
collection of driving data to be used in the project, a data collection platform used in pre-
vious projects was upgraded and installed in three different test vehicles. In this way data
could be collected under both controlled and uncontrolled conditions. The data collection
platform gathers data from several sensors in the test vehicle (cameras, GPS, IMU, driver
monitoring system) and uploads it to a database on a cloud server. Even if only three test
vehicles were available for this project, it was important to verify that the system can
handle a large number of connected vehicles. By using simulation techniques, it could be
shown that the system can handle more than one million connected vehicles simul-
taneously.

With the event method as a basis, the third work package focused on developing a search
function enabling users to search for specific events in the database with driving data.
Users can easily describe an event as plain text. Natural Language Processing techniques
(NLP) are then used for breaking the event down into event components. As an alterna-
tive, users can define an event using graphical block diagrams. For users more used to
coding, an application programming interface (API) can also be provided. Different algo-
rithms, referred to as detectors, are used by the system for finding the different event
components in the database. The project has, for example, looked into some kernel-based
triggers, and the use of machine learning for finding objects in video streams, to function
as detectors. Though, it has not been the focus of this project to develop a comprehensive
set of detectors. The search function can also manage time links between different event
components, distinguishing between things happening simultaneously or sequentially
during an event. The user is then presented with a list of all events found in the database
and, by clicking on each event, more detailed information (including the raw data from
different sensors) can be accessed and downloaded. Algorithms for narrowing the search,



based on what event results the user likes and not, were also implemented using dynamic
time warping techniques.

The fourth work package focused on demonstrating the possibilities with the event search
function. The system has been demonstrated to different teams within the project partner
organizations as well as to other researchers within academia and industry. The project
was also presented at Transportforum 2024.

Taken together, the project has fulfilled the objectives set out in the application, provid-
ing valuable knowledge on how to define and search for specific traffic events. While
some further development is still needed, the ambition is to bring the search function to-
wards a commercial product, in collaboration with some automotive companies. While
the project has mainly been focused on the automotive sector, and specifically ADAS,
there is a potential use for this type of data search tools also in other lines of business in-
cluding, for example, traffic insurance and community and traffic planning.

The project has been conducted in close collaboration between Pionate AB, Magna Elec-
tronics Sweden AB (initially Veoneer Sweden AB), Qualcomm Technologies Sweden
AB (initially Veoneer Sweden AB), and Folksam Omsesidig Sakforsikring. The project
started in November 2021 and ended in October 2024. The total project budget has been
SEK 4.1 million. The project has received SEK 2.0 million funding from the FFI program
Safe Automated Driving that made this project possible and that we are very grateful for.



2 Sammanfattning pa Svenska

Utvecklingen av nya avancerade forarstodssystem och sjdlvkorandefunktioner i bade per-
sonbilar och tunga fordon gor att det finns ett stort behov av data fran koérning 1 verkliga
trafiksituationer, som kan anvindas for att trdna och verifiera sddana system. Genom att
utrusta testfordon som kor runt i trafiken med en rad olika sensorer sdsom kameror, radar,
lidar, GPS, IMU (accelerometrar) sé kan information om olika hindelser och skeenden i
trafiken samlas in. Sddana handelser brukar med en engelsk term kallas ”event”. Med
hogupplosta sensorer sd skapas varje sekund méinga gigabyte data. Totalt kan det bli flera
tusen timmars kdrning, sa det 4r mycket stora dataméngder som behdver hanteras. Detta
ger 1 sin tur utmaningar géllande insamlingen av data fran fordonen. Sa stora méngder
data kan inte laddas upp via tradlds uppkoppling i mobilnétet. I stéllet far testfordonen
komma “hem” for byte av lagringsmedia eller s anvinds logistikpartners som aker runt
och byter ut lagringsmedia i1 fordonen. Vidare kan det vara utmanande att finna exakt de
situationer och hédndelser (event) i den stora méngden data som é&r relevanta for en speci-
fik utvecklare eller anviandare. Det blir som att soka efter en nal i en hostack.

Med detta som utgédngspunkt har syftet med projektet CLOUDIA varit att utveckla och
demonstrera en metodik for att definiera specifika event och gora dessa effektivt sokbara
1 stora méngder hogupplost data som har samlats in frén ett stort antal uppkopplade for-
don. Utifran syftet formulerades foljande tva dvergripande forskningsfragor (RQ):

e RQI1: Hur kan hogupplost data effektivt samlas in frén ett stort antal uppkopplade
fordon?

e RQ2: Hur kan sokning efter specifika event goras effektivt i stora mdngder insamlade
data?

Den forsta fragan fokuserar dels hur insamling av data kan goras mer effektiv, dels hur
skalbar insamling av data fran uppkopplade fordon kan goras for att hantera ett mycket
stort antal uppkopplade fordon. Den andra fragan fokuserar pa s6kning efter specifika
event i stora mangder data, vilket i sin tur skapar behov av att utveckla en metodik for att
definiera event.

Med utgangspunkt i projektets syfte och forskningsfragorna definierades fyra hornstenar,
eller arbetspaket, for projektet:

e Utveckling av metodik for att definiera event. Genom att pa ett strukturerat sitt bryta
ner komplexa event i mindre bestandsdelar kan dessa event goras mer effektivt sok-
bara.

e Uppgradera plattform for insamling av data fran fordon och testa skalbarheten av
systemet med simuleringar. En plattform for insamling av data som har anvénts i tidi-
gare projekt behovde uppgraderas avseende mjukvara, anslutning av ny sensor samt
gora den enklare att installera i fordon. Da det endast finns utrymme att bygga ett be-
gransat antal testfordon i projektet sa simuleras i stillet uppkoppling av ett stort antal
fordon.



e Implementering av sdkfunktion for effektiv sokning efter specifika event i stora data-
mingder. I det hir arbetspaketet utvecklas dels “backend” i form av databas(er) for
strukturerad lagring av data som har samlats in frdn fordonen, dels ’frontend” i form
av ett anvindarvanligt grinssnitt for att gdra sokningar efter specifika event.

e Demonstrera forskningsplattformens mojligheter for andra forskare och potentiella
anvéndare av systemet.

Ett flertal olika metoder och tillvigagéngssitt har tillimpats under projektet. Utveckl-
ingen av metodiken for att definiera event gjordes huvudsakligen genom workshops i
projektteamet, men dven baserat pa en litteraturstudie av tre EU-projekt som haft lik-
nande fokus. For insamling av egna data fran fordon byggdes totalt tre olika testfordon
som utrustades med den uppgraderade plattformen for dataloggning. Utover egna data,
anvindes dven annan kordata frén publikt tillgdngliga dataset. Flera workshops arrangera-
des for att testa och utvérdera systemet for sokning av event och videor har gjorts for att
kommunicera resultaten. Projektet har d&ven presenterats for fler medarbetare inom pro-
jektets partnerorganisationer samt presenterats pa en projektdag och en forskarkonferens.

Projektet har utvecklat en metodik for att dela in mer eller mindre komplexa event i
mindre komponenter som pa sa sétt var och en kan goras sokbara. Detta medger ocksa att
olika sddana eventkomponenter enkelt kan kombineras till nya specifika event. Eventen
delas in i aktorer, aktiviteter, objekt och egenskaper. Aktorer dr de som utfor aktiviteter.
Objekt dr foremal som 1 sig inte dr aktiva men som ar relevanta for eventet, exempelvis
en stoppskylt. Egenskaper anvénds for att beskriva villkor som dr konstanta under ett
event, exempelvis “soligt vider” eller “motorvédg”. Exempelvis kan ett event beskrivas
som en bil passerar en varningsskylt och kor sedan om en lastbil pa en landsvég i regnigt
véider”. Genom att anvidnda sprdkmodeller (Natural Language Processing, NLP) kan
eventbeskrivningen brytas ner 1 sina bestandsdelar (aktorer, aktiviteter osv). Da erhélls
aven information om inbordes forhallanden mellan eventets olika delar, exempelvis att
bilen forst passerar en varningsskylt sen kor om lastbilen.

For att gora sokningen efter specifika event s enkel som mdjligt har en sdkfunktion ba-
serad pa Natural Language Processing (NLP) utvecklats ("frontend”). Det innebér att det
eftersokta eventet kan beskrivas av anvindaren i klartext och att systemet sedan automa-
tiskt Oversitter texten till sokbara termer. Systemet erbjuder dven ett grafiskt anviandar-
granssnitt dar ett event kan byggas upp genom att linka samman grafiska objekt. For mer
avancerade anvédndare finns ocksa ett kommunikationsgrianssnitt (API) for programme-
ring av eventsokningar.

Data som samlas in fran testfordon lagras i en databas. Vid sokning efter specifika event-
komponenter anvéinds sé kallade detektorer (speciella algoritmer) for att hitta férekomster
av just denna eventkomponent i databasen. En form av detektorer kallas triggers och
dessa baseras pa matematisk analys av specifika signaler. Detta gor att man kan detektera
exempelvis hiarda inbromsningar eller filbyten baserat pa data frén accelerometrar. Vidare
baseras detektorer pd exempelvis maskininlérning for att exempelvis detektera specifika
objekt i en videostrdm. Aven om flera detektorer har utvecklats och anviints inom pro-
jektet sd har syftet inte varit att utveckla en heltickande uppséttning detektorer for alla ty-
per av eventkomponenter. Efterhand som data analyseras med hjilp av olika detektorer sa



taggas data sd att det nésta gdng gér mycket snabbare att soka igenom samma mingd
data.

Uppbyggnaden av databasen medger ocksa att (ostrukturerad) data fran andra dataset kan
matas in och analyseras. I projektet har data fran bland annat KITTI och Zenuity Open
Dataset (ZOD) anvints dels for att demonstrera systemets flexibilitet, dels for att testa
skalbarhet 1 termer av att hantera stora méngder data. Vidare medger den flexibla data-
basstrukturen att data kan delas mellan olika anvindare (i den utstrickning detta dr 6nsk-
vart och tillampligt med avseende pa exempelvis GDPR). Det finns ocksé mdjlighet for
enskilda anvéndare att utveckla sina egna detektorer och dven dessa kan delas med andra
aktorer. Pa s sitt kan insamlad data fa ett bredare anvindningsomréde och olika anvén-
dare kan hjilpa varandra med exempelvis verifiering av vissa funktioner.

For utvecklingen av ett system for sokning efter event behdvdes data fran verklig kor-
ning, bdde sa kallad naturalistisk data fran korning péd allmén vag och data som kommer
fran tester som gors under mer kontrollerade former pa en provbana. For &ndamalet vida-
reutvecklades den plattform for datainsamling som anvénts i tvé tidigare forskningspro-
jekt. Den bestar av en dator med ett 4G-modem och anslutningar for bade ethernet och
CAN, en GNSS-enhet som édven har accelerometrar och gyro inbyggda, en videoserver
som kan hantera upp till fyra kameror (tre anvindes 1 projektet), samt ett system for att
studera forarens blickbeteende. Mjukvaran uppgraderades fOr att géra insamlingen av
data effektivare och ytterligare en kamera som ocksa kan ge objektinformation kopplades
in. Plattformen anpassades ocksé for att enklare kunna installeras i fordon. Totalt installe-
rades plattformen for loggning av data i tre olika fordon.

Da utvecklingen av ADAS och liknande system kraver stora méngder data frén ett stort
antal korfall ar det viktigt att kunna koppla upp och samla in data fran ett stort antal for-
don samtidigt. Inom ramen for projektet fanns det inte mojlighet att bygga ett stort antal
testfordon. I stdllet anvindes virtuella servrar pA Amazon Cloud dér data fran testfordon
laddades upp och pé sé sitt kunde anviandas for att simulera att ett stort antal fordon sam-
tidigt kopplar upp sig mot databasen. Som mest simulerades 6ver en miljon uppkopplade
fordon, vilket tydligt visar pa systemet skalbarhet.

Sammantaget har projektet varit framgangsrikt da det har bidragit till bdde kunskapsupp-
byggnad och utbyte av erfarenheter mellan de medverkande foretagen. Projektet har
ocksa bidragit till flera av FFI:s 6vergripande mél och specifikt till malen for delprogram-
met Trafikséker automatisering. Projektets resultat har presenterats internt hos de med-
verkande foretagen och pa en forskarkonferens. Planen dr nu att forsoka ta nésta steg och
gora systemet for sokning av event till en kommersiell produkt.



3 Background

Traditionally, crash data has been used to focus the efforts in developing safer cars. With
Advanced Driver Assist Systems (ADAS), such as adaptive cruise control (ACC), data
from crashes is no longer sufficient (Veoneer and SwissRe, 2021). As ADAS develops
from more standalone functions, such as blind spot detection, towards automation of
more integrated functions like lane keeping support (LKS), more advanced methods and
tools, often using machine learning, plays a in increasingly important role. At the same
time, researchers and developers need to study and understand how the human driver per-
ceives different situations and what actions are taken, including how ADAS is used in
different situations. Taken together, this development drives a need for collecting large
amounts of high-resolution naturalistic driving data from large numbers of vehicles, both
test vehicles and vehicles in regular traffic.

Collecting large amounts of data from a large number of vehicles is a challenge. Tradi-
tionally, much of the data that has been collected has relatively low resolution (for exam-
ple vehicle position and speed) and therefore generates relatively small amounts of data
(typically some megabits per second). Also, data from more advanced sensors like cam-
eras or radars, that is interpreted as objects (for example “a car is detected at X meters
distance) generates relatively limited amounts of data. When data volumes are small and
there is no need for uploading data in real time, connected systems based on, for example,
4G can be used.

However, when data is collected for e.g. training of AI/ML systems, often unprocessed
data with high resolution is needed. Cameras, LiDAR and radar are examples of sensors
that generate large amounts of data and, with several such sensors in a vehicle, the
amount of data generated can surmount to around 80 Gbit/second. Thus, many times
more than what can be handled with a 4G connection. The large amounts of data gener-
ated therefore makes it very challenging to upload all data from vehicles to a server via
wireless networks. Therefore, most available solutions rely on collection of such high-
resolution data that is stored locally in the vehicle on hard drives or solid state drives.
This, in turn, leads to relatively high costs for collecting data from vehicles on the field.
Often logistics companies are used for swapping disks during nights when vehicles are
not used. The cost for collecting the data also increases with the number of vehicles, thus
limiting the scalability. It can also take long time, often several days or weeks from data
is created in a vehicle until it is made available for those who need it. Therefore, there is a
need for solutions providing faster and more efficient collection of such high-resolution
data.

When the data from vehicles is made available to users in large databases, the next chal-
lenge is to find what they are looking for. The amount of data is very large and just using
simple search criteria like vehicle acceleration, speed and position will not suffice. In-
stead, there is a need for making advanced searches for specific complex traffic scenarios
and sequences of specific activities performed by certain actors, so called events. This in-
cludes, for example, lane changes, driving at intersections, interaction with other road



users, or near crash situations. Also, events involving driver behavior (e.g. driver is look-
ing at the cell phone) can be of much interest. Thus, there is a need for developing
methods for clearly defining events combined with the development of more advanced
search functions that make it possible to find specific events in large amounts of data.



4 Purpose, research questions and method

4.1 Purpose

The overall purpose with the project has been to develop and demonstrate methods for
defining specific events and make these efficiently searchable in large amounts of high
resolution data that has been collected from a large number of connected vehicles.

By collecting high-resolution naturalistic data and making the data efficiently searchable
it can be made useful for research on and development of, for example, ADAS.

4.2 Research questions

The following two research questions were set out already in the application for the pro-
ject.

e RQI: How can high-resolution data be efficiently collected from a large number of
connected vehicles?

e RQ2: How can the search for specific events be performed efficiently in large
amounts of available data?

The first research question (RQ1) aimed at investigating how data collection can be made
more efficient in the sense that larger amounts of high-resolution data can be uploaded
from vehicles, as an alternative to storing the data locally in the vehicle. It also aimed at
investigating how data collection can be scaled up in terms of number of vehicles con-
nected. The second research question (RQ2) aimed at addressing how to make specific
events searchable. This in turn required that a method for defining such events was de-
fined.

4.3 Project cornerstones

Based on the project purpose and the research questions, four cornerstones for the project
were defined, see Figure 1. As a first step, based on workshops, studies of previous pro-
jects as well as analytical work, a method for defining events was developed. Secondly,
the data collection platform developed in a previous project was upgraded in order to
make data collection even more efficient. The data collection platform was installed in
three different vehicles for collection of naturalistic driving data. Moreover, the scala-
bility of the data collection system was tested through simulation of data flows. Thirdly,
with the event definition method as a basis, a user-friendly search function for finding
specific events in large amounts of high-resolution data was developed. As a last step, the
search function was demonstrated for project members and other interested parties and an
illustrating video was created. More details on the outcomes of each of these project cor-
ner stones are presented in the following chapters.

10
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Figure 1. lllustration of the four project cornerstones.

The project was carried out in close collaboration between Folksam who among other
things perform research on ADAS connected to accident statistics, Veoneer who develops
advanced vehicle safety systems (e.g. sensor systems detecting driver behavior), and
Pionate who are specializing in collection and analysis of large amounts of high-resolu-
tion data from connected vehicles. During the course of the project, Veoneer was split
into two companies, eventually resulting in two “new” project partners, Magna and Qual-
comm.

4.4 Method

Performing the project involved a mix of theoretical as well as practical methods. This
enabled several iterations where the solutions developed in the project could be tested and
evaluated, while providing valuable feedback and information.

In order to develop a method for defining events a project workshop was held to discuss
the needs when studying ADAS effects on normal driving. Participants were representa-
tives from Pionate, Veoneer (later Magna and Qualcomm), and Folksam. This was im-
portant to include all project partners’ perspectives and reach a common view on what to
be achieved. Also, methods applied, and results obtained in three other (large EU
projects) were studied as input and reference. Later, when some initial concepts had been
developed, these were presented, discussed and refined in more workshops. In parallel,
the development of the more hands-on search function had started, which also provided
valuable feedback for the event definition method discussions.

In order to enable testing and evaluation of the event definition method, as well as the
system for data collection and event searching, the access to high-resolution naturalistic
driving data was important. Therefore, a considerable amount of effort was put into build-
ing and installing data collection systems in three different test vehicles. As a first step,
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an evaluation system was installed in one vehicle by Pionate. After some further refine-
ments, two more (slightly upgraded) systems were installed in test vehicles by Magna and
Qualcomm respectively. This setup enabled controlled collection of data for the project,
where very specific pre-defined events could be recorded. For that purpose, the airfield in
Vérgarda was used as a test track with no other public traffic present. Also, naturalistic
data was collected with these vehicles by driving on public roads.

Further, to demonstrate the flexibility and scalability of the event searching system in
terms of its ability to handle different types of driving data, as well as handling large
amounts of data, naturalistic driving data from other datasets such as KITTI and Zenuity
Open Dataset (ZOD) was included.

In this project, it was not possible to install data collection systems in thousands or hun-
dreds of thousand vehicles. Therefore, to test and evaluate the scalability of the data col-
lection system, different simulation methods were applied. By utilizing Amazon Cloud
virtual previously recorded naturalistic driving data could be stored on virtual servers act-
ing as a large number of connected vehicles. By connecting these servers to the cloud
server used for the project, simultaneous data collection from a large number of vehicles
could be simulated. Thereby the system could be stress-tested in a relatively fast and eco-
nomically viable way.

For the development of the event search function, a combination of software develop-
ment, workshops and demonstrations was used in several iterations. The different parts of
the search function, for example the Natural Language Programming (NLP) enabling free
text search, were first developed as a stand-alone module that could be evaluated by the
rest of the project team. The access to naturalistic driving data collected within the project
also helped the development of the event search functions. When the different event
search modules could be integrated to a complete system, it was demonstrated “hands on”
for all project members. Also, videos demonstrating the system were made. The search
system was also demonstrated to a somewhat wider audience within the project partners.

12



5 Objective

The overall project objective is to make the collection of high-resolution naturalistic driv-
ing data more efficient, make specific traffic events efficiently searchable and, thereby,
more useful for the research and development of ADAS functions including drivers’ use
of ADAS. In the project application the following project objectives were outlined.

Develop a method for defining complex events that enables efficient search in
large amounts of data. The method shall be made publicly available to other
actors.

Develop a compact, robust and scalable platform for efficient collection of high-
resolution data in vehicles.

Reduce the time from the moment data is created in a vehicle until information
about an event is available for developers in the order from days to seconds.

Implement a search function in the cloud environment enabling advanced search
for events.

Demonstrate how selected events can be efficiently searched for in large amounts
of collected data.

Demonstrate the scalability of the system, by using simulations, showing that
1000-100,000 vehicles can be connected simultaneously.

The objectives have been kept more or less unchanged throughout the project and have
by and large been fulfilled by the project. When it comes to reducing the time it takes for
making data available for users (item #3 in the list above), the project has demonstrated
how this can be done, but the full functionality for accessing data more or less instantane-
ously from vehicle logging platforms has not yet been implemented.

13



6 Results and deliverables

As set out in the project purpose and objectives, a methodology for defining events has
been developed enabling the study of ADAS in normal day-to-day driving. A vehicle data
logging platform has been further refined and built in to test vehicles enabling collection
of naturalistic driving data. Furthermore, with the event definition method as a basis and
aimed at using collected driving data, a cloud-based search function has been developed.
This enables searching for specific events in large amounts of unstructured data. Also, the
scalability of the cloud-based system has been tested through simulations. In the follow-
ing sections, the project results and deliverables are described in more detail.

6.1 Method for defining events

To enable searching for specific events in large amounts of unstructured data, events
must be defined in a structured way. As a first step, a literature review was performed to
collect knowledge on what had been done in previous projects. Based on some inputs
from the literature survey and a series of workshops in the project team, a conceptual
method was developed where events are divided into event components that can be
searched for by defining specific event triggers. This is described in more detail in the
following sections (see Larsson & Ryman, 2023 for more details). It makes the basis for
the database and search functions that are explained in more detail later on.

6.1.1 Literature review

As an initial step, to understand how driving behavior and driving situations have pre-
viously been categorized, a literature review was performed. The review included the
EuroFOT, PEGASUS, and L3Pilot projects as examples of large-scale data collections
with a focus on scenarios and events in relation to assisted and/or automated driving.

EuroFOT

EuroFOT was the first large-scale EU project to evaluate Active Safety systems in field
tests. The project was conducted from 2008 to 2012 and included the collection and anal-
ysis of road data from 35 million kilometers drive by 1200 drivers in 4 countries (Kessler
etal., 2012).

Two definitions are primarily used within EuroFOT to categorize and describe factors
that impact driving: situations and events (Faber et al., 2011). A situation is defined by a
collection of ‘situational variables’ - characteristics of the traffic situation that is relevant
for the vehicle. For example: functional status for the vehicle (available ADAS systems),
speed limit, number of road lanes etc. An event is defined as something that takes place
within a given time period and is described as a combination of observations according to
predefined rules. EuroFOT only considers events to be relevant for security analysis. Ex-
amples include lane change, critical distance, crash and so on.

A couple of methodological choices need to be noted for the categorization of factors rel-
evant for driving in EuroFOT. First, events can be of varying complexity. They can differ
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both in abstract and conceptual description in ways that could impact data extraction. It is
also possible that some driving could fail to be included as either an event or a situation
per the EuroFOT categorization, such as vehicle following, driving with a tired or dis-
tracted driver etc. Such examples show driving circumstances that could be of interest,
but that are not bound to local time horizons but span longer periods and therefore would
not be classified as events. It might be possible to extend the definition of situations to in-
clude such types of driving, or we might require a new category all together.

PEGASUS

The purpose of the PEGASUS project (Pegasus, 2019) was to develop a standardized
process for testing autonomous drive functions. The project was a collaboration between
industry and academia (primarily in Germany), resulting in a number of publications,
symposia and the so-called PEGASUS method, which included specifications for verifi-
cation and validation of autonomous drive functions and describe relevant scenarios.

In PEGASUS, driving is described through the lens of Scenarios. A model based on six
layers is used to describe different parts relevant for a scenario.

Layer 1 Road-level Geometry, topology, boundaries, etc.

Layer 2 Traffic Infrastructure, Traffic signs, elevated barriers, etc.

Layer 3: Temporary manipulation of layer 1 and 2 | Road work, etc.

Layer 4: Object Static, dynamic, movable, maneuvers, etc.

Layer 5: Environments Weather, lighting, and surrounding condi-
tions

Layer 6: Digital information V2X, digital maps, etc.

The PEGASUS method also divides scenarios into the three categories functional, logical
and concrete, depending on its level of abstraction. For functional scenarios, all six layers
are described in natural language. For logical scenarios, the layers are described with in-
tervals for permissible parameter values. Concrete scenarios are specific instantiations of
a logical scenario.

To generate concrete scenarios from field data using the PEGASUS method, it is neces-
sary to create a scenario catalogue for the fourth layer in the 6-layer model. This scenario
catalogue is formulated from the point of view of safety relevant scenarios, defined from
the point of view of potential collisions with the ego vehicle (i.e. the vehicle logging the
data) and some other object. The logical scenarios are then specified based on where the
collision takes place: at the front, back, or side of the ego vehicle, as well as the initial lo-
cation of the other object: in front, behind or to the side of the ego vehicle. This way,
there are nine possible logical scenarios.

One important aspect to note for the PEGASUS project is that its purpose is to standard-
ize testing of autonomous drive functions. The method is therefore developed for repre-
sentation of generic scenarios that enable testing through simulation and on test tracks.

15



The main purpose has not been to formulate a structured categorization of driving, which,
as a result, does not fully fit the purpose in the CLOUDIA project.

The nine logical scenarios in PEGASUS describe only a limited number of scenarios of
potential interest. It may however be of value to study the contents of the layered model
and the data formats especially for inspiring formulation of information relevant for de-
scribing a generic event, even though not all information would be necessary for our pur-
poses.

L3Pilot

The third investigated project is L3Pilot, a large-scale European research project intended
for the evaluation of the safety and effectiveness of advanced autonomous drive functions
(Etemad, 2021). Drive functions are evaluated in simulation and with real road data from
1000 drivers in 100 cars in over 10 countries. The categorization of driving in L3Pilot
was done by considering driving scenarios (Metz et al., 2019; Weber et al., 2021). Such a
scenario describes the development of a situation in a traffic context where at least one
actor performs a specified action and/or are influenced by an event. The action or the
event is defined without concrete parameters and the influenced actor could be the ego
vehicle or another actor in the scenario. Examples include ‘independent driving’,
‘approaching lead vehicle’ and ‘lane change’. A pre-defined catalogue of drive scenarios
is created to contain scenarios that are intended to be mutually exclusive and exhaustive.
All analysis performed within L3Pilot is presented individually for each drive scenario.
The motivation for this presentation is that naturalistic drive studies contain many uncon-
trolled variables. Separating the analysis into multiple drive scenarios is an attempt to
minimize the variability of such variables.

The method of categorization of driving in L3Pilot is interesting but suffers from signifi-
cant shortcomings for use in CLOUDIA. The relatively few scenarios that are described
are quite general so there are still many uncontrolled variables that can cause two situa-
tional instances of the same scenario to be widely different. Variables of interest, such as
driver state, external environment, and other vehicles and objects, are left out of the defi-
nition of scenarios. The benefit of the limited and generic scenario descriptions is the ease
of extracting relevant information from data.

6.1.2 Descriptions and categorization to describe driving

The literature review has proven the importance of the intended use as a departure point
for describing and categorizing driving. In the CLOUDIA project, the goal is to create a
method for specifying a particular type of driving situation, event or a scenario of interest
and to be able to extract it from a high-resolution database. Therefore, to determine a suit-
able method for the intended use in CLOUDIA, the methods found through the literature
study should be evaluated from the point of view of the project’s intended objectives. In
CLOUDIA, the research need is to extract relevant driving data from naturalistic driving,
requiring the description of many types of driving scenes as well as the differences be-
tween them.
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The three projects studied represent different views on how driving can be described and
categorized, due to their different objectives. Thus, the optimal solution will depend on
the intended goal of the analysis. It would not be feasible for a large scenario database to
be exhaustive and contain only scenarios that are mutually exclusive. As the complexity
of the situations increase in real-life data, driving scenarios cannot be defined by parame-
ter intervals alone without iteration. A flexible approach is needed. An overtaking sce-
nario should be possible to classify as such also in a scenario when parameters fall out-
side of previously defined boundaries.

A benefit of the approach employed in EuroFOT is that the categorization into Situations
can decrease the variability of driving scenes without a corresponding decrease in the
generality of the definition of Events. We therefore suggest basing the approach to classi-
fication in CLOUDIA on the methodology employed in EuroFOT.

6.1.3 CLOUDIA event definitions

Based on learnings from the literature review as well as discussions within the project
team during workshops, the following terminology for defining events is suggested to suit
the specific CLOUDIA project needs:

An event contains one or more actors, performing one or several actions in relation to or
impacting objects or other actors, during a specific time period.

Let’s have a look at an example (see Figure 2). A simple event can be defined as “a car is
overtaking a truck”. In this example, the main actor is the car performing the action
”overtaking”. The truck is in this case regarded as an object. Also, the time period for the
duration of the event can be used to specify the event. For example, ”a car is overtaking a
truck during less than 25 seconds”.

Figure 2. Event example: A car overtaking a truck

The event can also be defined in more detail by, for example, adding more objects: a car
passes a speed sign when overtaking a truck”. In this case, also the speed sign is an ob-
ject. If we also let the truck in the above example perform some form of action, like
”braking”, the truck can be defined as an actor too: ”a car passes a speed sign when over-
taking a truck that is braking”.
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It is also of great relevance to clearly understand when in time different actions take place
in relation to other actions. In the previously used example, ”a car passes a speed sign
when overtaking a truck”, the word “when” indicates that the passing of the speed sign
happened within the same time period as the overtaking activity. If “when” is instead re-
placed by “before”, the passing of the speed sign happens first and then the overtaking
activity begins. Thus, it is important to also understand when one part of an event occur
in relation to other parts of an event. Following this reasoning, different parts of an event
either occur simultaneously or sequentially.

In contrast to actions (like “overtaking™) or other things that happen suddenly during an
event (such as “passing a speed sign”) there are features of an event that are constant
throughout the event. We call these conditions. For example, in an event described as “a
car is overtaking a truck on a rural road on a sunny day”, both “rural road” and “sunny
day” can be classified as conditions. In this case both road type and type of weather are
regarded as constant during the event. This may also include many other factors describ-
ing properties of a vehicle (e.g. “a green car” or an “all-wheel drive car”), state of the
driver (e.g. “driver above 50 years of age”) and so on.

The examples provided above clearly show that as more details are added to an event de-
scription, the complexity of analyzing the event, ensuring that it can be understood in an
unambiguous way, increases. To enable analyzing and searching for relatively complex
events, the events can be divided into smaller event components. This allows for search-
ing among collected data not for a complete complex event but making separate searches
for individual event components. By tagging time and place for when the individual event
components occur, the event components can be re-combined into the more complex
original event after event component search is completed.

Let’s have a look at one of the example events again: ”a car is overtaking a truck”. This
can be divided into the event components “a car”, “overtaking” and “truck”. By doing
this we don’t need to create specific search algorithms for the more complex complete
event. Instead, we can focus on searching for the individual event components. We would
thus need to search for “a car” an ”overtaking” activity and a “truck”, all occurring within
a specific time frame and geographical space. Here we can also include searching for spe-
cific conditions that shall be fulfilled for the whole duration of the event.

However, as events get more complex, such as “a car passes a speed sign when overtak-
ing a truck that is braking”, we will also need a more profound understanding of what
actor is actually doing what and in relation to what other actor(s) and/or object(s). Just
finding a bunch of event components occurring at the same time and place is not enough.
This is further elaborated in section 6.2 where the concept of Natural Language Pro-
cessing is introduced.

Certain aspects differentiate these definitions from those used in EuroFOT. The definition
of “conditions” (situational variables in EuroFOT) is extended to encompass all proper-
ties which can be considered constant during a certain period of time. This means that
properties such as driver state and driver demographic data, as well as others, can be in-
cluded. In this project, “events” are also allowed to be created without being defined from
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a certain number of observations from data. This allows events to be described using nat-
ural language, and all events which may be interesting can be described even if they are
difficult to formally define a priori. From a natural language definition, events are not
easily extracted from data, but the connection between the two is covered in the project
and this is further elaborated in section 6.2.

6.1.4 Defining test events

The variance brought by the wide variety of potential actors, actions, objects and condi-
tions that may occur in real life traffic adds complexity when defining and searching for
specific events. This variance can be reduced by first studying events occurring in a less
complex environment. Thus, in February of 2023 a workshop was held with all project
partners with the goal of deciding how, and what kind of data should first be collected in
a controlled environment. A test track with no other traffic, the Vargarda airfield, was
used for that purpose. A simple example is a scenario where the ego vehicle is overtaking
a lead vehicle. In a controlled data collection, it will be easier to itemize data and derive
initial event triggers (see section 6.1.6) that are later applied and iterated on while search-
ing through larger naturalistic data sets. Annotation of real-life scenarios will be required
at a later point, to determine the need for additional event triggers, as well as the range of
the variables studied.

Controlled event development

Large scale naturalistic data, such as the data gathered in the CLOUDIA project, can be
used in different ways to learn more about driving. The collected data needed to serve
different objectives and therefore multiple kinds of events were required. Objectives in-
cluded validation of the data collection process, data for preprocessing development,
simple event scenarios for proof of concept, and more complex events that satisfy the
project goals. To fulfil the objectives, events were identified using different focus areas to
exemplify different end usages of the data.

Five test events were defined (see below), and then performed and recorded on the air-
field. The intent was to iteratively define more events when search methods for the initial
events had been developed. Data collection was conducted at the airfield with a Volvo
XC90, provided by Magna, equipped with the Pionate data collection platform. The driv-
ing was performed by professional test drivers from Magna, overseen by CLOUDIA rep-
resentatives from Qualcomm and Magna.

Identifying risky behavior

It is a known fact that aggressive and risky behavior contribute to a higher accident risk
(Elander, West & French, 1993). The same group, approximately 15% of the population,
is involved in 50% of the accidents (MacDonald, 1994; Williams, 1964). From an insur-
ance perspective the insurance fee is based on fixed factors such as where you live, previ-
ous incidents, age, power, ADAS availability, and how expensive the car is to repair. Ag-
gressive driving (driver behavior) is not included as a factor in today’s insurance offer.
With a platform such as CLOUDIA such additional factors could be explored to calculate
and identify risky behavior. This could for instance include distance to other vehicles,
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number of sharp turns, accelerations, AEB system activations etc. A basic harsh braking
event was chosen, to start off the analysis of acceleration signals and allow for further in-
vestigations of near crashes.

Example event 1: Harsh braking

Two variants where ego vehicle speed is varied at 10, 20, 40 and 70 km/h.
la: Ego car doing a quick but planned speed reduction, no ABS activation.
1b: Ego car “panic brakes” to stop as soon as possible.

In 1a, the test drivers were instructed to make a hard but planned braking, e.g., where a
driver might perceive a danger in time but still need to quickly stop the vehicle. No ABS
should engage, and the situation could resemble a traffic jam.

In event 1b the drivers were instructed to “panic brake” and stop as soon as possible,
which could for example correspond with animal appearing on the road. Both these
events were performed multiple times with varying vehicle speed before the braking
event. During the tests no other vehicles or objects were present at the runway.

Learning about crash causation and correlations

There is a lot of knowledge on accident risks in traffic, but there remains a need for con-
tinuing to learn how to prevent such accidents. Large scale data accessible via platforms
such as CLOUDIA are beneficial. For instance, turning left is one of the leading causes of
car crashes. 22% of all car crashes involve a left-turning vehicle and 53% of all cross-
path crashes are the result of left turns (NHTSA, 2010). For bicyclists, fatal accidents are
most common on country roads (Kullgren et al., 2019). When analyzing left turns, it is
important to distinguish between the road turning left and there being an intersection.
Map data is not always complete, thus a prototypical left turn in an intersection was in-
cluded. To understand any effect on the risks posed to vulnerable road users, the more
complex bicycle overtaking and car overtaking scenarios were also included.

Example event 2: Brake + turn
2a: Speed reduction followed by a 90-degree turn.
2b: Speed reduction before and during a 90-degree turn.

In version 2a the ego speed is first reduced with braking and followed by a 90-degree
turn. In the second version, 2b, the braking is continued throughout the turn. The ego
speed of the vehicle varied between the tests and the test driver were instructed to drive
comfortably.

Example event 3: Car overtaking

Two cars are driving, one after the other, the car behind passes the other in a “flying”
overtaking. Speeds for ego and target vehicle of 70 and 45 km/h and 40 and 20 km/h re-
spectively.

For this event the target vehicle first accelerated to its target speed followed by an accel-
eration of the ego vehicle to a higher speed. The ego vehicle is then closing into the target
vehicle and is then overtaking it, by first changing lane passing the target car and then
change back to the previous lane.
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Example event 4: Bicycle overtaking
A stationary bicycle is passed by a car as if driving on a rural road. Speeds of 20, 40 and
70 km/h.

For this event a stationary bicycle was mounted onto the airfield. The test drivers were
instructed to do a safe overtaking as they would in naturalistic driving. The overtaking
was performed at constant speed and while passing the bicycle the lateral distance to the
bike was slightly increased.

Verification and clarification of effectiveness of ADAS

Different studies have shown that the effectiveness of ADAS may vary. To verify under
what circumstances the effect varies, large scale data are important. For instance, it has
been seen that the effectiveness of AEB for pedestrians potentially is different at different
speeds and during different light conditions (Kullgren et al., 2023). Access to large scale
data would be beneficial to identify what factors are associated with the lower effective-
ness. This includes data on how the driver acted pre/during the event (breaking/steering)
as well as current light conditions, weather, time, etc. Another example includes ACC. A
major potential of ACC use is that traffic flow may become more stable and the number
of shock waves which may lead to rear-end collisions can be reduced (e.g. Ciuffo et al.,
2021; van Arem et al., 1996). To investigate the effectiveness of ACC and the possible
reduction of near-collision-events, data such as that from CLOUDIA are necessary. Here
a car following event was included to allow for further investigation of driver gaze and
behavior in naturalistic driving.

Example event 5: Car following, target braking
The ego vehicle follows the target in 40 km/h when the target vehicle makes a soft speed
reduction. Performed both with and without ACC active.

For this event the ego vehicle and target vehicle traveled in the same direction. When
ACC was not engaged the test driver decided on a comfortable time head way. The lead-
ing car was instructed to make a smooth deceleration, which the ACC system and test
driver then needed to act upon.

The test route is a 46-kilometer circuit north of Gothenburg starting off in a northwest di-
rection then going south on E45 back to the starting point. After the test drive it was
noted in a table who was driving, date, if any sunglasses were worn, and if something out
of the ordinary happened in the traffic environment while driving. Additional data collec-
tion was performed on the same route in the opposite direction by a number of different
Qualcomm employees. This enables comparisons of the same route with multiple drivers
in the same vehicle, as well as the same route with the same driver. The vehicle was also
used for additional, longer, drives by Qualcomm employees to incorporate other routes.

Naturalistic data collection

To collect additional data to the CLOUDIA project, a test vehicle and a pre-defined driv-
ing route was selected. The test vehicle was a Mercedes Benz E 220 d 4MATIC, model
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year 2017, which was equipped with the Pionate logging solution, Veoneer/Magna infra-
red DMS (driver monitoring system) and a Veoneer/Magna MV S4G front looking cam-
era.

6.1.5 Data preparation

To allow for high quality analysis from collected data, it is essential to validate that the
data quality is sufficient for the analysis intended. When reviewing the data, we found
offsets in the acceleration data, both in the longitudinal and lateral directions. Over longer
periods of time the average acceleration should be close to zero, since otherwise it would
indicate that the velocity keeps increasing/decreasing, or the vehicle keeps turning
throughout the drive. This offset also seems to change slightly between drives or even
during drives, which might indicate a movement of the measuring devices. This is not un-
expected given the non-invasive nature of the data acquisition platform, however, needs
to be handled in pre-processing.

To reduce the noise level, a Butterworth filter of the second order with a cut-off fre-
quency at 1Hz was used to filter all relevant signals. This reduces all high frequency
components in the signal while keeping the low frequency components. To deal with the
suspected calibration errors, we applied a rotation to the observed signals to compensate
for the measuring device mounting. Compared to trying to remove the offsets for each
signal separately, this approach has the advantage of preserving the orthogonality of the
coordinate system.

6.1.6 Event trigger development

The goal of this work package is to develop a search method for complex events by
breaking them up into smaller event components. The approach to perform this is to de-
tect individual event components by searching for triggers. A trigger is a point in time
that indicates that something of interest in the data occurred. The event search method
can then be developed by finding out what combination or sequence of triggers are re-
lated to a specific event. But to do this we first need to specify how triggers can be de-
tected.

Triggers can be extracted in many ways, one of the simplest ways of doing it is by look-
ing at a signal, for example lateral acceleration, and then determine when it exceeds some
threshold value. This is, however, somewhat limiting in what kind of triggers you can de-
tect. Sometimes you may not be interested in the value at a specific time, you might want
to detect a slight elevation of a signal over an extended period, or the change in a signal.
This also poses limits such that it is only possible to find triggers that relates to one signal
at a time. Instead, we propose to detect triggers by using cross-correlation. The cross-cor-
relation between two signals measures how their similarity depends on their relative shift.
Cross-correlation can generally be used for pattern recognition tasks, where a longer sig-
nal is searched for the occurrence of a shorter one: the kernel. This can be compared to
why convolutions are used in convolutional neural networks, where features are extracted
from signals based on their similarity to kernels that are learned from data. We, instead,
want to design the kernels, and then detect the triggers based on the cross-correlation be-
ing higher than a threshold.
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This has advantages over the simple threshold method since we are no longer limited to
point-like detections. Instead, signals can be efficiently searched for features, and kernels
can be designed freely. Furthermore, there is no limitation to using only one signal at a
time, but it is possible to construct multidimensional kernels that combine multiple sig-
nals.

Kernel design

Even though manually designing the kernels provides the advantages of more control and
better understanding of the trigger extraction, it requires more work and thoughtfulness.
In this section, we describe kernels used in the present project and provide some insight
in what kind of triggers each kernel is detecting. We will start with some simple kernels
and work our way to the more intricate ones.

Constant kernel

The first kernel tested is a simple constant kernel extending for two seconds. This kernel
detects when a signal, in average, is above some threshold for two seconds which is
equivalent to performing a point like detection when the signal has been filtered with a
rolling mean filter, with a window size of two seconds.

Applying this kernel to the acceleration would give us a signal that is associated with a
velocity change during a short duration. This behavior is shown in Figure 3(a) where the
filtered signal (green line) is very strong as the change in velocity is significant over a
period. Note that this is a better measure than acceleration (blue line) itself. Although
they look similar, the filtered signal with a constant kernel (green line) has significantly
less noise. This is a good method to get rid of high frequency noise that is often found in
raw data such as acceleration.

Constant kernel Asymmetric kernel

—— Acceleration
(a) ,
Velocity

—— Acceleration
— Jerk
—— Filtered acceleration

(b)
\A:kmda:ion MW
o™ e ————
/ f

/ AW

Figure 3: Application of constant and asymmetric kernels to the acceleration signal. (a) Filtered accelera-
tion with a constant kernel (green line) is strong when the change in velocity is significant during a short
period. (b) Filtered acceleration with an asymmetric kernel (green line) is strong when the change in accel-
eration is significant during a short period.
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Applying this kernel to both longitudinal and lateral acceleration, both positive and nega-
tive, a wide range of signal behaviors can be detected. Some of the detected triggers have
a lower acceleration extended for a longer time, while some have a higher acceleration
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for a shorter time. Positive and negative lateral acceleration triggers behave similarly,
both in average behavior example triggers and their speed histogram. For longitudinal
acceleration some differences are observed, the main difference being more acceleration
triggers than deceleration for low velocities, and the opposite for high velocities.

Asymmetric kernel

Asymmetric kernels can be used to detect the average signal change above a threshold.
Applying this kernel to the acceleration would give us a signal that is associated with a
change in acceleration during a short duration. This behavior is shown in Figure 3(b)
where the filtered signal (green line) is very strong as the change in acceleration is signif-
icant over a period. Note that this is a better measure than jerk (orange line) itself.
Although they seem similar, the filtered signal with an asymmetric kernel (green line) has
significantly less noise.

Multidimensional kernels

To allow detecting triggers in more than one dimension at the time, a more advanced
multi-dimensional kernel is introduced. A multidimensional kernel can be constructed in
many ways, one way is to combine the one-dimensional kernels previously presented.

With this method we can construct many different multi-dimensional kernels. We will
present the detected trigger for two of the defined multidimensional kernels in more de-
tail; Constant-Constant and Constant-Asymmetric.

In Figure 4 the Constant-Constant kernel is presented. This kernel should detect triggers
with both lateral and longitudinal acceleration which is the case. From the speed histo-
gram these triggers are predominantly detected at lower speeds.
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Figure 4: Average acceleration profile, example profiles and velocity histogram of detected triggers with a
multi-dimensional kernel, with a constant negative kernel in longitudinal dimension and constant positive
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kernel in the lateral dimension. (a)-(b) shows the acceleration profiles in longitudinal direction, (d)-(e) in
the lateral direction and (c) and (f) is the velocity histogram.

The result from the next kernel, the Constant-Asymmetric kernel is presented in Figure 5.
This kernel expresses a trigger indicating that a positive longitudinal acceleration and a
decrease in lateral acceleration occur simultaneously. As for the previous trigger, there is
a variation in the individual detections, while the acceleration behavior around the trig-
ger, on average, is in line with what the kernel should detect. This trigger is also predomi-
nantly detected at lower speeds.
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Figure 5: Average acceleration profile, example profiles and velocity histogram of detected triggers with a

multi-dimensional kernel, with a constant negative kernel in longitudinal dimension and an asymmetric in

lateral dimension. (a)-(b) shows the acceleration profiles in longitudinal direction, (d)-(e) in the lateral di-
rection and (c) and (f) is the velocity histogram.

6.1.7 Triggers in example events

To investigate how the trigger formalism can be used for detecting events we study the
example event defined in section 6.1.4, Controlled event development. The simplest of
the example events was the harsh braking event. In Figure 6 the results of the data collec-
tion for this event are presented together with the detected triggers. The event was per-
formed at four different speeds: 10, 20, 40, and 70 kph, and for both harsh (no ABS) and
panic (with ABS) braking. The figures show that for each sample of the harsh braking
events three triggers were detected which express a decrease, negative, and increase in
longitudinal acceleration respectively. It thus appears that a harsh braking event can be
detected using those three triggers. Detecting a braking event solely based on the deceler-
ation trigger is not sufficient and does not express the “urgent” or “harsh” elements of the
brake. The presence of decrease as well as increase triggers indicate that braking was
quickly engaged and disengaged, and thus was not a slow and extended braking event.
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Figure 6: Acceleration and detected triggers from harsh braking events performed at the airfield. Each
subfigure corresponds to one event, blue line shows longitudinal acceleration profile, and color-coded ver-
tical lines show detected triggers. (a)-(d) show events when “panic” braking was performed (e)-(h) show
harsh braking events when ABS was not activated.

Next, we study the “brake and turn” event. The acceleration and detected triggers for this
event is presented in Figure 7. The event was performed four times on the airfield with
different speeds, braking before or during the turn. This is a slightly more complex event,
which is also seen in the number of triggers detected. All triggers are not present in all
events either. It is from the figure hard to understand exactly which triggers are detected
when, so a table is also presented in Table 1.

Event Triggers ordered by time Time difference [s]
Turn after brake: 30 kph [t4, t1, t5, 13, t4, t1] 5.2
Turn after brake: 70 kph [t4, t1, t5, 16, t3, t7, t4, t1] 4.2
Turn during brake: 30 kph [t4, t7, t1, 15, t2] 1.1
Turn during brake: 70 kph [t4, t1, t7, 15, 12, 16] 2.6

Table 1. Trigger sequences detected for annotated turn events. We also indicate
the time difference between the brake trigger (t1) and the turn trigger (2 or t3).

The table shows that the detected trigger in each event varies in both number, what trig-
gers, and in which order they appear. However, for all occurrences of the “brake and
turn” event the triggers t4, t1, and t5 are detected in that order, which is also the pattern
previously associated with harsh braking. From the table it is also clear that triggers can
be associated with a turn, either a lateral acceleration trigger only or a lateral acceleration
trigger combined with triggers indicating an increase and decrease in lateral acceleration.
The time between the triggers can then be used to distinguish between turning after brak-
ing and turning during braking.
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Figure 7: Acceleration and detected triggers from a brake and turn event performed at the airfield.
Each subfigure corresponds to one event, blue line shows longitudinal acceleration profile and yellow
lines show lateral acceleration profile, and color-coded vertical lines show detected triggers. (a)-(b)
show events when a brake was followed by turn (c)-(d) show events when a brake was performed
before and during turn.

The next example event is “overtaking a car”, which was performed in the airfield six
times at two different ego-vehicle speeds. For this event the signal associated with an
overtaking, the lateral acceleration, is too weak to be detected when using a threshold of
1m/s?. Therefore, in the following analysis the trigger detection uses a threshold of
0.3m/s?, both for the ego-vehicle and bicycle overtaking events. In Figure 8 the lateral
acceleration and the detected triggers are showed for all six events.

From the figure we observe that all the occurrences of the car overtaking events have
similar acceleration profiles. We see that the event seems to start and end with positive
lateral acceleration and have negative acceleration in between. However, we also ob-
served some variations both in how strong the acceleration is, especially for the different
speeds, and how the negative acceleration is performed. In some cases, the negative ac-
celeration is split into two segments, where two triggers can be detected. This indicates
that the negative acceleration associated with settling into a new lane, then returning to
the first lane, and is not continuous.

This variation also leads to some differences in what triggers are detected in each occur-
rence of the event. In all cases the event starts with the trigger sequence of t7, t2, t6 and
t3, which in order expresses an increasing, positive, decreasing, and negative lateral ac-
celeration. The continuation of the sequence varies but in general the t7, and t2 triggers
are observed. The variations include presence of an extra t3 trigger, which is when the
negative acceleration is split into two triggers, the presence of t6 and t7 triggers at the end
of the sequence which is related to how fast the acceleration changes around last positive
acceleration indicated with at t2 trigger. We also have one event occurrence where the
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second t2 trigger is not observed, but from the figure there seems to be some positive ac-
celeration observed at the end of the event. This acceleration is very low, below the
threshold of the trigger detection, and thus no trigger is detected. This illustrates how
small the acceleration associated with an overtaking is, especially at low speeds. For
event performed at higher speeds, the signal is stronger.
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Figure 8: Acceleration and detected triggers from car overtaking event performed at airfield. Each subfig-
ure corresponds to one event, blue line shows lateral acceleration profile, and color-coded vertical lines
show detected triggers. (a)-(c) show overtaking at approximately 40 km/h, (d)-(f) at 70 km/h. Triggers de-
tected with a threshold of 0.3 m/s?.

The fourth example event is “overtaking of a bicycle”. Nine of these events were per-
formed on the airfield for three different vehicle speeds. In Figure 9, the acceleration for
all these events is presented.

The figure indicates that the acceleration profiles for bicycle overtaking is very similar to
that of a car overtaking, which is expected. The events are essentially the same, a car first
changes lane, passes an object and then returns to the original lane. This results in posi-
tive followed by negative and again positive lateral acceleration. Although some differ-
ences may be observed, one being that the bicycle overtaking event generally takes less
time at the same speed, and two, that the negative acceleration is only observed as one
peak. These differences probably occur since the bicycle on the airfield was stationary
while the car overtaking was moving, making the overtaking of the bicycle take shorter
time.

We can determine that the detected triggers are very similar to the car overtaking event.
We also notice that very few triggers were detected in the 20 km/h events. This is due to
the signals being quite small, which is especially noticeable at lower speeds. Just as for
car overtaking, we generally observe the same sequence of triggers: t7, t2, t6, t3, t7, t2
and in one case a t6 trigger.

28



Vehicle speed: 20.0

Vehicle speed: 20.0

Vehicle speed: 20.0

3| (a) —— Lateral 31 (b) —— Lateral 31 (c) —— Lateral
— - & — 2
& & &
n n Y
f4 2 2
E 1 E 1 E v
s s s
o o e el WS Saaa -
© © ©
fd fud o
0 o Q@
o1 [T o1
o o o
O ) 1%
< 2 < e < &
— T — T
3| — t6 -3 3| — t6
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time [s] Time [s] Time [s]
Vehicle speed: 39.0 Vehicle speed: 39.0 Vehicle speed: 39.0
31 (d) —— Lateral 3{ (e) —— Lateral 31 (f) —— Lateral
— 2 — 2 — 2
~ & &
2 2 2
E1 E &1
[ = c c
S S S o
© © ©
9 8 {9
o o g
o1 [T [T
S | —n S | —n S | —o
<(—2—t6 <—2—t6 <—2—t6
— v — 7 —
3] — 3 3] — 3 3] — 83
00 25 50 7.5 10.0 125 15.0 17.5 20.0 00 25 50 75 100 125 150 17.5 20.0 00 25 50 75 100 12.5 150 17.5 20.0
Time [s] Time [s] Time [s]
Vehicle speed: 68.0 Vehicle speed: 66.0 Vehicle speed: 68.0
31 (g) — Llateral 31 (h) —— Lateral 31 (i) —— Lateral
— 2 — 2 — 2
& & &
0 “n 0
2 2 2
£ E 1 E 1
5 s 5
= 0 S 0 = 0
© © ©
o i o
o o <
o1 o1 o1
o t2 S 2 o ©2
<*2—t6 <*2—t6 <*2—t6
— — —
—3{ — B -3{ — 83 -3{ — 83
0.0 0.0

50 7.5 10.0 125 15.0 17.5 20.0

Time [s]

50 7.5 10.0 125 15.0 17.5 20.0

Time [s]

50 7.5 10.0 12,5 15.0 17.5 20.0

Time [s]

Figure 9: Acceleration and detected triggers from bicycle overtaking event performed at airfield. Each sub-
figure corresponds to one event, blue line shows lateral acceleration profile, and color-coded vertical lines
show detected triggers. (a)-(c) show overtaking at approximately 20 km/h, (d)-(f) at 40 km/h and (g)-(i) at
70 km/h. Triggers detected with a threshold of 0.3 m/s?.

The final example event is the car following situation where the target vehicle makes a
sudden brake. This data from this event has unfortunately not been studied in detail, as no
data from the MVS4G was available in time. The lack of object data makes this event es-
sentially identical to the “harsh braking” event for the present analysis, and thus not
prioritized.

6.1.8 Trigger-based event search

From the previous section we gained an understanding of the basic components of the car
overtaking event performed in airfield. With this knowledge we want to construct a
method based on the triggers to extract similar events from naturalistic driving. So, in the
first iteration of the event search we look for the trigger sequence t7, t2, t6, t3, t7, t2. We
exclude the last t6 trigger since it related to how fast the car returns to the original lane.
We also don’t search for the sequence where two t3 triggers are detected since it mostly
occurred at slow speed, and most overtaking is performed at higher velocity.
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To perform the event search, we start with finding all the triggers with a threshold value
of 0.3 m/s%. Then the detected triggers are filtered so only the one we are interested in are
left, e.g., the one present in the trigger sequence, in this case t2, t3, t6, and t7. We then
detect where the sequence of triggers matches the pattern we are interested in. If all trig-
gers are within a time window of 10 seconds, we classify it as an overtaking event.

6.1.9 Event search in naturalistic driving data

In this section we perform the method of event search for a car overtaking event, which
was described in the previous section, and evaluate the results.

The search was performed on a dataset consisting of 50 different drives, all above one
hour, with a total drive time of approximately 72 hours. Since the drives are long, they
are likely to be performed, at least partially, on either highways or rural roads where a car
overtaking is likely to occur. When the search for the specific trigger sequence was per-
formed, 262 events were detected. When the time constraint (10 seconds) was added, this
number was reduced to 53, which would amount to 0.73 detected events per hour. The
number of overtakings performed ought to be dependent on the driver’s driving style and
thus highly individual. With this in mind, 0.73 overtakings per hour is not obviously un-
reasonable.

To evaluate whether the events detected in the dataset are overtaking events or not, the
driving data related to the events were investigated. As examples of some contexts ob-
served, Figure 10, Figure 11, Figure 12, and Figure 13 are presented, each showing one
instance of an event detection. The figures show lateral and longitudinal acceleration, ve-
locity, and the car’s position on a map, which together can provide a first understanding
of whether the event is an overtaking or not.

In Figure 10 we observe what is likely to be an overtaking event. The lateral acceleration
looks very similar to the acceleration profile observed in the example events, a rapid in-
crease in velocity, and the location in satellite imagery appears to be a rural road. This in-
dicates that the event is an overtaking event. However, satellite data only is not sufficient
to make certain that this is a car overtaking.
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Figure 10: Example overtaking event detected using a specific sequence of triggers. (a) Longitudinal (blue
line) and lateral (orange line) acceleration profile of an automatically detected event, which consists of a
series of triggers (t7, t2, t6, t3, t7, t2). (b) Velocity profile of the same event. (c) Trajectory of the event plot-
ted on a map image (red line). The direction of the travel is shown every 5 seconds (blue arrows). The ar-
row body (without head) represents the travel distance in 1 second. It is visible that the driver performs a
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lane change and significantly increases the velocity subsequently. The lateral shift due to the lane change is
also visible in the maps image overlay.

Traffic is complex and several different cases can trigger the same sequence of accelera-
tion triggers as the overtaking event. In Figure 11 the road has a curvature which closely
resembles the path of an overtaking. In Figure 12 the search method detects a lane change
before a left turn in an intersection, illustrating how similar the acceleration profiles are
for these events. Figure 13 may show a car overtaking, but it could also be a result of
road geometry. In addition to the detected events presented, we frequently observe detec-
tions of the car going through a roundabout, which appears to have a similar acceleration
profile to an overtaking. It is thus important to extend the search method with more data
signals, for example object information along with the acceleration data. This will allow
for more robust detection of events with fewer false positives.
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Figure 11: Detected sequence of triggers due to a road shape creating an illusion of overtaking. (a) Longi-
tudinal (blue line) and lateral (orange line) acceleration profile of an automatically detected event, which
consists of a series of triggers (17, t2, t6, t3, t7, t2). (b) Velocity profile of the same event. (c) Trajectory of
the event plotted on a map image (red line). The direction of the travel is shown every 5 seconds (blue ar-

rows). The arrow body (without head) represents the travel distance in 1 second.
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Figure 12: Detected sequence of triggers due to a lane change. (a) Longitudinal (blue line) and lateral
(orange line) acceleration profile of an automatically detected event, which consists of a series of triggers
(17, t2, 16, 13, t7, t2). (b) Velocity profile of the same event. (c) Trajectory of the event plotted on a map im-
age (red line). The direction of the travel is shown every 5 seconds (blue arrows). The arrow body (without

head) represents the travel distance in 1 second.
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Figure 13: Detected sequence of triggers due to an unknown reason. (a) Longitudinal (blue line) and lat-
eral (orange line) acceleration profile of an automatically detected event, which consists of a series of trig-
gers (17, 12, t6, 13, t7, t2). (b) Velocity profile of the same event. (c) Trajectory of the event plotted on a map
image (red line). The direction of the travel is shown every 5 seconds (blue arrows). The arrow body (with-

out head) represents the travel distance in 1 second.

6.2 Search function for specific events

With the event method at hand and (unstructured) driving data available, a search appli-
cation is needed for finding the specific events of interest. In this section, different as-
pects of structuring and searching for data is described in more detail, including some im-
portant learnings. The section is structured in accordance with Figure 14 below. To start
with, the frontend including the user interface and different options for searching for
events is explained. Then, the backend including the structuring of the database is de-
scribed. In the last part, some special features are described, and some aspects of scalabil-
ity are covered.

BackEnd FrontEnd
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Figure 14. Backend and frontend of the search application (source: Pionate).

6.2.1 Frontend and user interface

To make searching for events easy and user friendly, a web interface is provided where
users can select between three different ways of searching for specific events: Plain text
(NLP), Building block diagram, or Application Programming Interface (API).

For users preferring to express an event as plain text, a simple search window is provided
where an event can be described in the user’s own words, see Figure 15.

The event to be searched for can be written in the search window as one or several sen-
tences. For example, an event can be expressed as “Ego car made a left turn slowly when
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a bicycle was passing the road”. In order to make the content of the text searchable in the
database, the system uses natural language processing (NLP) techniques. The system will
then dissect the text describing the event to identify its different event components.

pionate
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road

%

Figure 15. The plain text search window.

The first step in analyzing the text is to decompose it into its event components by identi-
tfying time links, which establish the temporal relationships between the different ele-
ments of an event. In this instance, the time link is represented by the word "when" which
connects the first element (“Ego car made a left turn slowly”) to the second element (“a
bicycle was passing the road”). As mentioned earlier, time links can be classified into two
primary categories:

e Sequential: Elements in an event occur before or after another.
e Simultaneous: Elements of an event occur concurrently.

In the given example, the time link “when” implies a simultaneous occurrence, indicating
that both elements of the event (the right turn and the bicycle passing) are happening con-
currently.

To enable identifying the temporal links, a natural language processing model based on
transformer architecture is used (specifically the “en_core web_trf” large language
model from spaCy (source: huggingface.co). This NLP model works in a way that the
whole text is passed as an input to the model, and then the model provides annotations on
the text as an output. The model performs essential tasks such as tokenization, pattern
matching, part-of-speech (POS) tagging, and dependency parsing. See Figure 16 below,
which is an example generated with corenlp.run.
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Figure 16. Example of text annotation obtained by an NLP model.

With the help of the annotations, an event text can now be decomposed into multiple
event components. The model also outputs the role of each word in the text, and how
words relate to each other. This can now be combined with rule based methods to break
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down each event element even further to obtain single event components such as individ-
ual actors, actions, objects and conditions that can be searched for in the database.

When adjectives or expressions like “at low speed” are included, the system will offer the
user to specify in more detail how to delimit the search. The underlying NLP is enhanced
to detect loosely defined terms like “slowly” which will make the system ask the user for
further clarification. In the example illustrated in Figure 17, the user will be offered to
specify the speed interval for “slowly”.
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Figure 17. The user is prompted to specify some words in more detail.

Before we continue with how search results are presented, let’s briefly look into the other
two alternatives for the user to describe an event to be searched for. Instead of writing
plain text, there is a possibility to describe the event to be searched for using a graphical
tool, see Figure 18.

The graphical tool allows users to drag and drop different icons for actors, actions, ob-
jects and conditions onto a workspace and linking them together, making it easy to build
and visualize events. Each icon has properties that can be specified, like the color of a car
or the direction of a turn (left or right). Once the elements are placed, users can create
time links to show how event components relate to each other chronologically. Users can
also adjust time markers to control when actions occur and modify variables like speed or
angle for specific event components. This approach may be faster and more intuitive than
describing the event in text. In the project, the graphical tool was mainly developed as a
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proof of concept solution for evaluation as a user interface. It has not yet been imple-
mented as a working search tool in the system.
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Figure 18. The graphical tool user interface for describing an event

For more advanced users familiar with coding, the system also exposes APIs that can be
accessed via RESTful API calls, implemented in Python. These APIs allow users to inter-
act with the system programmatically, bypassing the need for the drag-and-drop interface
or text-based descriptions. Using the API, users can directly set up actors, actions, ob-
jects, conditions and time links with code, providing greater flexibility and efficiency
when building complex scenarios. While this approach may be more complex, it offers a
powerful alternative for those comfortable with programming, giving them more control
and automation.
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road

Search time Number of results Average score of top 20% I Results |
- 2
Show More

O« 15+ =~

O Ego car made a left tum slowly when a bicycle was passing the road
Alternative terms: -
Nr: 1| Score: 100/100 | Duration: 00:00:05 | Added on: September 25, 2023 | Id: 2

O Ego car made a left tum slowly when a bicycle was passing the road
Alternative terms: -
Nr: 2| Score: 100/100 | Duration: 00:00:06 | Added on: September 25, 2023 | Id: 19
Search suggestions

(@ Acar changed lane to the right in sunny weather. |

(Q Acar changed lane in heavy traffic.

(@ on a sunny day, a car tured right on a highway. |

Figure 19. The search results page showing two found events.

Upon completing a search, for example by typing the event text to search for and pressing
Enter, the search result page is displayed (see Figure 19). In this example, two matching
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events were found. Certain elements are highlighted to indicate relevance, allowing users
to quickly identify key information. A score indicates how well the found event matches
the searched for event. However, this function has only been briefly tested and is not yet
implemented.

Upon clicking on a search result, a detailed view is displayed for that specific event, see

Figure 20. It is organized to show essential information in a structured format. Top left is

a map view to illustrating the event. In the example, it can clearly be seen that the car

made a turn. Next, under Recording info some key details of the data origin are pre-

sented, including the Recording ID, drive duration, the recording date, the date the data

was added, the recording location, the model of the ego vehicle, available sensor data, the

dataset source (e.g., from a specific dataset or fleet data), and the applicable license.
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Time.
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Figure 20. Detailed view for a specific event.

On the right, under Search result info, the search score is found, and the duration of the
recording is displayed, followed by details on matching and missing tags, which are
available if the data has been tagged previously by the user. The duration provided here
describes the duration of the found event, in contrast to Recording info that shows dura-
tion for the whole recorded drive. The Event timeline illustrates the different identified
event components on a timeline.

At the bottom left, camera data is displayed, enhanced with an object detection filter that
highlights objects detected during the event. Finally, on the bottom row, sensor data is
plotted, with the X-axis representing time and the Y-axis illustrating angular velocity
around the Z-axis (showing turns) and forward velocity (relative to the car's reference
system). The Y-axis metric is customizable to display any chosen sensor data.

At the top right of the detailed event result page, a row of icons are arranged, providing
options to download, save, share, and give feedback (thumbs up and thumbs down but-
ton) to refine the search results. These actions are also accessible directly from the search
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result page facilitating efficient data management. The feedback system, which supports
search refinement, is discussed in more detail in section 6.2.3.

An important concept that needs to be mentioned within this framework is the notion
"ego" vehicle. The term "ego" is a property linked to an object to indicate that it refers to
the vehicle that was recording the data (i.e. the car executing the right turn in the above
example). This differentiation is essential for distinguishing between the car recording the
data and any other car that may be part of an event (e.g. a car observed by a camera in the
recording vehicle). The term “ego” is commonly used to denote the vehicle recording
data. It was evident also in this project that it is important to make sure the system is
making the correct semantic interpretation when describing an event.

6.2.2 Backend functions — the database

Up until now we have covered the right part of the picture, the frontend of the system
(see Figure 21). Now, let’s have a look at the left part, the backend, focusing on building
the database and making the data searchable.
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Figure 21. Backend and frontend of the search application (source: Pionate).

The database has two parts, or it can be thought of as being two distinct databases. The
first is a timeseries database (on the left), optimized for storing raw data with each entry
tied to a timestamp. This is where all incoming data, like recorded vehicle fleet data, is
initially stored. The data can be collected from connected test vehicles or publicly availa-
ble datasets (like KITTI).

Technically, this timeseries database only contains references to the actual data, indicat-
ing where it's stored on the server. Each row is a data coming from a sensor indexed by a
timestamp (in milliseconds, nanoseconds, etc.) with the corresponding file path as the as-
sociated value.

In this timeseries database, a detection service runs the various detectors that filter the
raw data to identify specific event components. The detectors are different sorts of algo-
rithms that can be used to identify specific event components in the data. This is where
the event triggers, as described in section 6.1.6, come into the picture. In addition to the
kernel-based event triggers described earlier, detectors can also, for example, be based on
machine learning algorithms providing specific image object detection capabilities. This
detection process operates independently and doesn't need to be synchronized with the
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rest of the system. Some of the detectors used in the detection service in the project in-
clude:

e Object detection: Machine learning used for annotating camera data.

e Turn detector: A combination of several data sources including IMU and GPS for de-
tecting that the ego vehicle is making a turn

e Brake detector: Use of IMU data for detecting braking of the ego vehicle

. o Natural Language
Detectors: Pre-processed Sentence describing an event Processing (NLP)
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Figure 22. The combining of detectors and event components to search for events.

In Figure 22 the complete search process using detectors find specific event components
is illustrated. Unstructured driving data from vehicle fleets or other datasets is fed to the
database. The data is tagged by the different detectors that are used for analyzing the data.
When a search text string is entered, it is analyzed using NLP to identify the specific
event components. By matching event components against the tagged data (illustrated by
the dots in the matrix), specific events can be detected. The time links between event
components are illustrated by the lines between the dots.

A strength of this approach is that detectors can be added to the system as the system
grows. User defined detectors can also be added to the system. Detectors can also be
shared between colleagues or researchers working on specific events. The overall perfor-
mance of the search function is always dependent on how good are the detectors that have
been implemented.

As the detection service processes data through various detectors, it inserts the annotated
(or cleaned) data into a separate database designed to serve the user interface (as illus-
trated in Figure 21). Unlike the timeseries database, this database is more structured, with
each table storing key information such as the event component identifier, start time, end
time, and details of the event component itself.

6.2.3 Search features and scalability

A useful feature of the search function is the "like" and "dislike" buttons (thumbs up and
thumbs down) mentioned above, which lets the user provide feedback to the system, en-
hancing the user interface experience. This feedback system functions as a recommender,
allowing users to refine their search results. For example, if a user likes a specific result,
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pressing the thumbs up button will lead to more similar results to be shown. Pressing the
thumbs down button will lead to similar results being filtered out. In this way, the user
can easily narrow the search results to those events more closely matching their prefer-
ences.

The underlying mechanism enabling this is dynamic time warping (DTW), a technique
used to compare results regardless of their duration. DTW analyses the shape of the data
and performs pattern matching, allowing the system to identify similarities between two
timeseries data even when they have different durations or if they have different offsets.
Figure 23 below shows how DTW differs from simply performing Euclidian matching.

VN
Euclidean Matching ‘ Dynamic Time Warping Matching

Figure 23. Illustration of Dynamic Time Warping (Source:researchgate.net)

In this way the users can refine the search results by liking or disliking events they are in-
terested in rather than alternating the textual event description.

The database is designed for scalability, operating across multiple machines to efficiently
handle growing storage demands. The system supports large datasets and can incorporate
both public and proprietary data. Scalability has been tested with the KITTI and ZOD
datasets, along with two internal collections: one from an airfield and another from in-
house recorded data, totaling 73 drives. This confirms the system’s capability to manage
and scale effectively with diverse data sources.

Scalability testing has been conducted to simulate conditions equivalent to handling 6.2
terabytes of data, representing approximately 330 hours of driving. Under these condi-
tions, the system has demonstrated its ability to manage large data loads while maintain-
ing performance. In a worst-case scenario, a search operation would take up to 15 sec-
onds using the current approach.

6.3 Driving data collection platform and test vehicles

The data collection platform played an important role for supplying the project with driv-
ing data. In addition to collecting naturalistic data from driving on public roads, it also
enabled data collection from specific pre-defined events that were performed on a test
track. The data collection platform can be installed in a plurality of car brands without ne-
cessitating a collaboration with the vehicle manufacturer for data access. In the project,
the data collection platform was installed in three different test vehicles (a Volvo XC90, a
Mercedes E220d, and a BMW 330e, see Figure 25).
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The data collection platform used in the project (see Figure 24) is an upgraded version of
the platform developed in the projects Mini Fridge (Diarienr. 2019-05212) and Imaginate
(Diarienr. 2020-02793). While the core hardware remains the same, a new type of camera
sensor was added, the software for collecting and uploading the data to the server was up-
graded, and a new casing was developed that made the system more robust and helped to

simplify the installations.
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Figure 24. The data collection platform that was installed in the test vehicles.

The heart of the platform is an accelerated processing unit (APU), where a central pro-
cessing unit (CPU) has been combined with a graphics processing unit (GPU) on the
same chip. In this way, the APU provides relatively high performance in a compact for-
mat. The APU has been equipped with a 1TB solid state drive (SSD) that is used for the
operating system as well as onboard storage of data. It was also equipped with a 4TB
SSD for additional onboard data storage capacity. The APU was also equipped with
ethernet ports, additional cards for CAN communication and a 4G modem.

In order to keep track of the test vehicle’s geographical position and movements the plat-
form is equipped with a programmable sensor module for positioning (GNSS) and orien-
tation determination. It has a satellite receiver, a magnetic field sensor, an accelerometer,
and a gyroscope. The orientation is measured as accelerations in x, y, z directions as well
as yaw, pitch, and roll. The data is sent to the APU via CAN at 10Hz update rate.

Up to four video cameras can be connected to the logging platform. In this project three
cameras with 1080p resolution were used. One camera was mounted on the sun visor and
directed towards the driver, one was placed inside the windscreen filming in front of the
car, and one filmed the instrument cluster. By filming the instrument cluster important in-
formation about the vehicle status (e.g. ACC tuned on) can be retrieved by using image
recognition algorithms. It does not require any specific connection with the vehicle.
Fisheye lenses on the cameras enables a wide field of view but such lenses also somewhat
distort the images. The cameras are connected to a dedicated video server that in turn
streams the video data to the APU via an ethernet connection.
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As a complement, a fourth camera from Magna (MVS4G) was included, looking in front
of the vehicle. This camera is equipped with special software enabling real time object
detection information in addition to the video stream. The object information is sent to
the APU via CAN. To make the object detection software in this camera work properly it
needs to be fed with speed information from the vehicle’s CAN network. However, in
this case the speed information could be obtained from the logging platform’s GNSS in-
stead. Thus, no need for connecting to CAN in the car.

To track the driver’s gaze behavior, a driver monitoring system (DMS) was included in
the logging platform. The DMS uses IR diodes, and a camera placed on the dashboard to
track the driver’s eye movements. In this way driver attention and behavior (e.g. driver
looking at the cell phone) can be studied in more detail. The eye tracking information is
sent to the APU via CAN.

Included in the platform is also a push button that can be placed close to the driver. By
pushing the button, the driver can choose to immediately stop all data logging by the plat-
form. However, as long as the test vehicle is still running, the data collection platform
will continue to process and upload already logged data.

The logging platform cabinet was placed in the trunk of the test vehicle and all that was
needed to make it run is power from the vehicle (12V DC). Main part of the installation
job is the mounting of sensors (cameras) and routing of cables between sensors and the
data logging platform. Also, antennas for GNSS and 4G need to be installed.

Figure 25. Magna test vehicles at the airfield in Vdrgarda.

As soon as the platform is powered, i.e. when the test vehicle is started, the APU boots
and connects to the server via the 4G modem. It also starts collecting data from the differ-
ent sensors that are connected to it. All collected data is time-stamped with the global
GPS time, enabling efficient post processing as well as post-synchronization of data col-
lected from other sources, such as other test vehicles. All collected data is stored on board
on the SSDs as a backup. Simultaneously, collected data is also uploaded via the 4G link
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directly to the server. Under favorable conditions, approximately 2GB of data can be up-
loaded per minute, but this may vary depending on the quality of the connection. When
the test vehicle is turned off, a timer keeps the system running for a few more minutes to
ensure that all logged data is securely saved. In addition to uploading data, the 4G con-
nection enables continuous monitoring of the test vehicles (e.g. when they are driven and
where) as well as over the air updates of the software used on the platform.

6.4 Simulation of large number of connected vehicles

The possibility to collect driving data from test vehicles has been important for conduct-
ing this project. Due to limited resources, the number of test vehicles in the project had to
be limited (three in total). This fulfilled the needs for data collection in the project. How-
ever, the event database is intended to be used also with large fleets of vehicles collecting
data. Therefore, simulation was used to emulate a large number of simultaneously con-
nected vehicles.

When viewed in a broader perspective, the development of new ADAS functions require
collection of data from large number of vehicles. The safe roll-out of increasingly ad-
vanced driver assistance systems at SAE Level 2 and 3 and, more importantly, to prepare
the coordinated roll-out of systems aiming at SAE Level 4 and up, require the continuous
monitoring of key performance indicators (KPIs) of the system’s maturity on the edge.
These KPIs include a growing amount of information perceived from a vehicle’s sur-
roundings as modern ADAS systems, such as AEB or LKAS, use for example cameras
and radars to safely support the driver. If such systems’ operational design domains
(ODDs) are extended, field evidence of such a system’s robustness is needed. This can
only be effectively achieved at scale in a reasonable amount of time by getting data from
thousands of vehicles, and hence, fleets of prototypical cars, test vehicles, and, in essence,
ride hailing fleets that are meant to prepare the transition to robotaxis, would create a near
future growing demand of a flexible, cloud-enabled data analytics environment to contin-
uously calculate such KPIs.

In this project, we have systematically evaluated such a scenario by using simulations as
a real vehicle fleet at that scale was not accessible. We used a cloud-enabled “scale-on-
demand” environment to simulate data streams from initially ten thousand simulated ve-
hicles. This unveiled restrictions with respect to network and data flow management at
the cloud side.

Initially, this constraint could have been easily mitigated by network segmentation that
would have, however, ended up with a potential single-point-of-failure if one segment
would become unavailable or non-responsive. Instead, we designed and evaluated a dif-
ferent setup where an edge-facing gateway would handle and act as load balancer to the
vehicle fleet. Any incoming connection to synchronize data from the edge platform in-
stalled in vehicles to the cloud (handled by one of three actual backend systems) for data
analytics. Each of the backend nodes was capable of handling up to 341,000 incoming
data streams. Thus, in this way, we were able to successfully simulate data uploads from
over 1 million vehicles in a fleet. The actual tests were performed by using Amazon
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Cloud where virtual servers were set up to emulate the large number of test vehicle plat-
forms connecting with the data collection cloud server.

This setup allows for scalability in two dimensions: more edge-to-cloud backends to po-
tentially scale to more vehicles as well as more cloud backends to spread the data storage,
pre-processing, and analysis based on business optimization criteria like: (a) regulatory
constraints based on geographical regions, (b) dynamically responding to flexible pricing
options in the cloud environment (e.g., utilizing discounted cloud resources in case of
overprovisioning from the cloud provider), and (c) separating the geographical edge-to-
cloud end-point, bringing it closer to the actual operating area of the vehicles (i.e., to
meet legal constraints in specific countries) but separating the data processing to either
on-premise installations outside the major cloud operators or to conduct cloud analytics
in regions with different prices or regulatory constraints.

6.5 Summary of the results and connection to FFI targets

The project has delivered on the objectives set out in the beginning of the project and the
main project targets, described as the project cornerstones (see Figure 26), have been met.

A method for defining events, based on events, event components and detectors has been
developed (1). The data collection platform has been upgraded and the scalability of the
system has been tested with simulations of over one million connected vehicles (2). A
search function for finding specific events has been developed, and it can be accessed via
an easy-to-use interface based on graphical building blocks, free text search or an API
(3). The event search platform has been demonstrated, for the project partner companies,
for some other automotive companies and to researchers focusing on traffic safety (4).
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— for specific events
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Figure 26. The four project cornerstones.

In a broader perspective, the project has also contributed to the objectives of the FFI pro-
gram in several ways including:
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Developing a method and system supporting the development of new automotive
safety systems and functions, which in turn can contribute to strengthening the com-
petitiveness Swedish automotive industry.

Connecting to international actors, especially since during the course of the project
the Swedish automotive supplier Veoneer was divided into two companies leading to
an involvement and collaboration with international suppliers Magna and Qualcomm.

Supporting collaboration with small and medium sized companies, in this case in-
volving the startup company Pionate.

Supporting collaboration between automotive suppliers, in this case Magna,
Qualcomm and Pionate.

Supporting collaboration between different lines of business. In addition to automo-
tive suppliers, also insurance company Folksam has been part of the project. Further,
one interesting conclusion from the project is that the developed methodology and
system for searching for events could also be applied in other types of business, such
as finance, healthcare and authority administration.

Involving researchers from universities, since the project members from Pionate have
strong connections to Chalmers and Gothenburg University and the project member
from Folksam is connected to ITRL at KTH. This has also enabled some research re-
sults emanating from academical work to be incorporated in this project.

The project has also delivered on several of the focus areas outlined for the Safe Autono-
mous Driving FFI sub-program, including for example:

Verification and development techniques for the development of safe automated func-
tions, such as ADAS that has been in focus in this project.

Monitoring and understanding driver behavior, driver perception and the use of dif-
ferent safety-related systems.

Human machine interaction, both in terms of how drivers perceive the driver environ-
ment and ease of use for the event search system developed in the project.

Methods and tools for representation of driver behavior, where the event search sys-
tem enables detailed analyses of driver behavior in specific driving situations.

Fast and efficient communication between the vehicle and infrastructure, enabling
near real-time data from connected vehicles.

Methods and technologies connecting vehicles with cloud services where machine
learning and other techniques can be used for developing safer automated driving.

44



7 Dissemination and publications

How are the project results planned to | Mark Comment
be used and disseminated? with X
Increase knowledge in the field X Knowledge has been increased regarding how to

define events, how to efficiently collect data from
test vehicles and how to search for specific events
in large amounts of data.

Be passed on to other advanced tech- | (X) It is possible that some more advanced engineering
nological development projects will be done, but more likely a product development
project closer to market adaptation.

Be passed on to product development | X Pionate will aim for continuing to develop the data-
projects base and server functionality, preferably in close
collaboration with one or more potential customers.

Introduced on the market (X) Eventually, the goal is market introduction, but first
some more product development is needed.

Used in investigations / regulatory / li-
censing / political decisions

The project results have been disseminated in the form of demonstrations/seminars ar-
ranged for other members of the project partner organizations, some other automotive
companies as well as for researchers in the field of traffic safety. This also provided valu-
able feedback for the project. In January 2024 the project was presented at the Transport-
forum conference in Linkdping. Pionate have also produced a series of short videos
demonstrating the event search function.

A master thesis has been performed in connection with the project where naturalistic
driving data was studied. The title is “Evaluating Car Crash Risk Changes with pay-as-
you-speed Insurance - an insurance service case study in Sweden”. The author’s name is
Peiling Wu, from Aalto University School of engineering and KTH Royal Institute of
Technology. The thesis was initiated by project partner Folksam and focused on evaluat-
ing data from an earlier field study of 600 participants where the impact on speeding and
crashes from a system monitoring vehicle speeding was studied.
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8 Conclusions and future research

The CLOUDIA project has focused on developing methods for defining and efficiently
searching for specific traffic events in large amounts of unstructured naturalistic driving
data. In brief, the project has developed a method for defining events. By splitting an
event into event components based on the categories actors, activities, objects and condi-
tions, event components can be made searchable in the database. To search for event
components, specific algorithms are used, referred to as detectors. A user interface for
searching for events has been developed. Further, the scalability of the system has been
evaluated. Here we list some important conclusions from the project.

e The project has shown that events can be efficiently searched for, saving time for us-
ers that need to find specific driving data. The search function can also be developed
to allow users to subscribe for specific events, so they immediately get a notice when
a specific event has occurred in a test vehicle in the field.

e By applying a modular approach, i.e. breaking complex events down into event com-
ponents, it is much easier to develop the detectors. Conversely, with an increasing
number of detectors, the number of potential events that can be composed increases
exponentially. Also, by combining more detectors, the searches can be more confi-
dent thus reducing the number of false positives and false negatives.

e The project has demonstrated how detectors can be defined as kernel-based triggers,
A kernel can be designed to express very versatile behavior in the data signals. By in-
tricate design, both local information and information over longer timescales in
timeseries data can be expressed. Using cross-correlation, kernels can be used on any
data signals like acceleration, velocity, gaze behavior and object information, on con-
tinuous as well as discrete signals. Also, the use of machine learning for object detec-
tion in video streams has been applied.

e While the search function lets each user (company) develop their own detectors, there
are possibilities to share detectors between users. In this way, not all users need to de-
velop all detectors on their own, and users can compare detector performance across
different datasets.

e The project has demonstrated the scalability of the system developed for searching for
events. This includes scalability in terms of number of test vehicles connected to the
system. Simulations using external servers showed that the system could handle more
than one million vehicles simultaneously. Scalability has also been demonstrated in
the sense that data from other datasets (like KITTI and ZOD) could be added to the
database and be made searchable with the same search tools.

e It was important to the project to collect data from own test vehicles. This enabled the
project to define very specific test events for controlled environments, in addition to
other publicly available datasets.

e A simple and easy-to-use user interface makes searching for events fast and efficient.
By applying Natural Language Processing methods (NLP), events can be described as
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plain text by the user. NLP will then decompose the event into searchable event com-

ponents. As an alternative, a user interface using graphical building blocks was tested.
Also, an application programming interface (API) can be offered for users that prefer

coding.

The term “ego” proved to be important to make the system interpret an event descrip-
tion correctly, clearly distinguishing between the vehicle collecting the data (the “ego
vehicle””) and any other vehicle in an event.

By including functions for further delimiting the search results, using dynamic time
warping techniques (DTW), the user can easily tell the system what type of search re-
sults are wanted and not.

In addition to these conclusions, the project has generated many ideas on what further re-
search can be performed in this area.

As the detectors are key for what events can be searched for, detector development is
always important. One specific area, among several, that can be expanded on is to de-
velop detectors for analyzing human behavior based on driver models.

While this project has been much focused on automotive applications and the devel-
opment of ADAS, the involvement of an insurance company in the project provided
interesting insights on other potential use of this type of search tools. It could be used
for, for example, city planning or other types of business/authorities where large
amounts of data need to be analyzed, such as medicine, human behavior data, tax of-
fices or in the financial sector. Another potential use could be to search for data that
can be used for creating different types of digital twins.

By adding modules using generative Al, the system could be used for re-creating sim-
ilar but slightly modified events. In this way, using real event data as a basis, different
“what if” events can be created and tested.

Integrate functionality for investigating alternative search terms. Sometimes it is diffi-
cult for a user to describe an event in a way that the expected or wanted event search
results are obtained. If the user starts with a “best guess” description, an Al agent can
be used for proposing alternative search strings, interactively helping the user to get
closer to what is really wanted. An interactive Al agent can , for example, tell the user
that “do you know that your most limiting parameter right now is your definition of
‘slowly’? Can I recommend a broader interval?”

Add functionality for indicating accountability for presented search results. When
using deep learning techniques, accountability is difficult to obtain since results are
“black box” generated. When an Al system is instead designed as a set of small Al
modules, each one fully explainable, it is referred to as “glass box™ Al, or “inter-
pretable” Al. By illustrating to what extent, a search result is based on “black box™
and “interpretable” Al the user can be provided with an indication of the account-
ability.
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