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Kort om FFI
FFI är ett samarbete mellan staten och fordonsindustrin om att gemensamt
finansiera forsknings- och innovationsaktviteter med fokus påområdena Kli-
mat & Miljö samt Trafiksäkerhet. Satsningen innebär verksamhet för ca 1
miljard kr per år varav de offentliga medlen utgör drygt 400 Mkr.

För närvarande finns fem delprogram; Energi & Miljö, Trafiksäkerhet och
automatiserade fordon, Elektronik, mjukvara och kommunikation, Hållbar
produktion och Effektiva och uppkopplade transportsystem.
Läs mer påwww.vinnova.se/ffi.
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1 Sammanfattning på Svenska

Djup maskininlärning och artificiell intelligens används flitigt i AD/ADAS-
system. Dess oförutsägbara beteende är dock ett stort problem i säkerhet-
skritiska system. Ett problem är att AI-systemet vanligtvis utvecklas isol-
erat, vilket innebär att algoritmerna lär sig av ganska standardiserade an-
noteringsriktlinjer, såsom rektanglar och semantisk segmentering, som inte
är specifika för trafiksäkerhetskraven. På grund av denna utvecklingspro-
cess är det resulterande AI-systemet inte tränat för att vara medvetet om
säkerhetsspecifikationerna.

Givet denna begränsning är målet med detta projekt tvåfaldigt. Först
strävar vi efter att ta fram en uppsättning säkerhetskodade riktlinjer för an-
notering för djup maskininlärning. För det andra, baserat på dessa riktlinjer,
skapas en proof-of-concept säkerhetsdrivet benchmark-dataset för träning och
validering av djup maskininlärning. Detta dataset innehåller tidssynkronis-
erad sensordata som samlats in runt Göteborgsområdet i Sverige. Det är
sammansatt av kamerabilder, lidarpunktmoln, GPS-koordinater, hastighets-
mätning och IMU-information med säkerhetskodade annoteringar på all sen-
sordata. För att kunna validera det tränade AI-systemets prestanda och
effektivitet krävs vanligtvis en stor mängd annoterad data, där en manuell
annoteringsprocess kanske inte är genomförbar. Därför är datasetet i detta
projekt annoterat av en skalbar automatisk annoteringsprocess med vår AI-
dataplattform SnapXS. Dessutom är detta dataset helt sökbar givet säkerhets-
relaterade attribut för datafiltrering, urval och forskningsändamål.

Det finns två avsedda användningsfall: 1) det annoterade datasetet är
redo att användas för AI-utveckling och validering ur ett trafiksäkerhets-
perspektiv; 2) de säkerhetskodade annoteringsriktlinjerna kan användas som
referens för säkerhetsdriven AI-utveckling. Detta initiativ syftar till att öka
Sveriges satsning på att bygga tillförlitliga AI-system och bidra till arbetet
mot nollvisionen.

2 Executive summary

Deep learning and artificial intelligence (AI) is widely used in AD/ADAS
systems. However, their unpredictable behavior is a major concern in safety
critical systems. One problem is that the AI system is typically developed in
isolation, meaning that the algorithms are learning from rather standardized
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annotation guidelines, such as bounding boxes and semantic segmentations,
which are not specific to the road safety requirements. Due to this develop-
ment process, the resulting AI system is not trained to be aware of the safety
specifications.

Given this limitation, the goal of this project is twofold. First, we aim
to produce a set of safety-encoded deep learning annotation guidelines. Sec-
ondly, based on these guidelines, a proof-of-concept safety-driven benchmark
dataset is created for deep learning training and validation. This dataset con-
tains time synchronized sensor data recorded around the Gothenburg area in
Sweden. It is composed of camera images, LiDAR point clouds, GPS coor-
dinates, speedometer recordings and IMU information with safety-encoded
ground truth labels on all sensor data. Typically, to be able to validate
the performance and efficiency of the trained AI system, a large amount
of labelled data is needed, where a manual annotation process may not be
feasible. Therefore, the dataset in this project is labelled by a scalable au-
tomated labelling process using our AI data platform SnapXS. Moreover,
this dataset is made fully searchable given safety related attributes for data
filtering, curation and research purposes.

There are two intended use cases: 1) the annotated dataset is ready-to-use
for AI development and validation from a traffic safety’s perspective; 2) the
safety-encoded annotation guidelines can be used as a reference for safety-
driven AI development. This initiative aims to boost the effort of building
reliable AI systems and contribute to the road map towards Sweden’s Vision
Zero.

3 Background

Deep learning algorithms are being widely used in ADAS and AD systems
due to their impressive capabilities. However, the reliability of these algo-
rithms is known to be challenging due to their data-driven nature. In this
project, we aim to bridges this gap by incorporating safety requirements into
the AI algorithm development in order to improve their interpretability and
verifiability.

To gain a better insight into the problem, we need to take a closer look at
the development process of these AI algorithms. Typically, there are multiple
steps involved in this process. First, a large amount of data is collected by
development vehicles with multiple sensors, such as video cameras, LiDARs,
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radars, positioning devices. The amount of data depends on the sensor setup,
where a typical number is 10TB per day per vehicle. To be able to develop
AI algorithms using these data, a core dataset needs to be curated from this
large, increasing pool of incoming data.

This step is typically called data curation and the outcome is a subset of
interests. The level of magnitude for this core dataset depends on multiple
factors, but a typical size is estimated to be around 20TB. At the next step,
these terabytes of data need to be labelled as the ground truth given some
guidelines. This ground truth is then used as the teachers in the data-driven
AI development. That is, a deep neural network architecture is selected and
trained using this core dataset. These trained networks are then evaluated
on a validation dataset that contains terabytes to petabytes of data, which
need to be labelled as well. Once the network is trained and validated, it is
passed to the subsequent functionalities, such as object tracking and decision
making modules.

These steps are repeated throughout the research and development cycle
until the requirements of the product are satisfied. Each of these steps has
their own requirements, and these requirements should compose to the final
requirements of the end product.

However, due to the distinct natures of these steps, they are typically
carried out by multiple teams with different specifications, which in turn
makes the composition of these requirements challenging. As a result, it is
difficult to interpret the behavior of neural networks from the perspective of
traffic safety. In particular, we identify three main challenges in the com-
mon approach: 1) safety requirements are not systematically encoded into
the data annotation guideline; 2) training data curation is not taking safety
requirements into its consideration; 3) manual data labelling is highly time
consuming and costly, which makes it challenging to iterate and to follow de-
tailed safety guidelines. For instance, one of the state-of-the-art approaches
for data curation, active learning, is to select a subset of data that the net-
work is highly uncertain about. If we look at the problem in isolation, this
approach makes sense, since the more data varieties we expose the network
to, the better data diversity the network may be able to handle. In the-
ory, this heuristic and greedy approach expands the capacity of the network.
However, it does not necessarily guarantee safety of the system. Therefore,
additional measures need to be taken for this purpose.

The primary goal of this project is to create a set of safety-driven deep
learning annotation guidelines and produce a proof-of-concept benchmark
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dataset for AI algorithm development and validation. Benchmark datasets
have played significant roles in the progress of AI development. It is one of
the most important ways to contribute to the domain and stay relevant to the
state-of-the-art. There are existing datasets such as Kitti, nuScenes, Waymo
Open Dataset, etc., created by various research and development organiza-
tions. These datasets mainly focus on standard deep learning annotations
instead of traffic safety specifications, which is the aspect we focus on in this
project. The resulting benchmark dataset from this project consists of anno-
tated and time synchronized sensor measurements (camera images, LiDAR
point clouds, GPS coordinates, IMU information, etc) recorded in Sweden.
The data is collected using the research vehicle from the laboratory of Re-
source for vehicle research at Chalmers (REVERE). Data processing and
automated annotation is implemented using our AI data platform SnapXS.

4 Purpose, research questions and method

4.1 Research questions

This project is aimed at bridging the gap between deep learning and traffic
safety research. The research questions being studies are stated as follows:

1. What are the road safety specifications that are relevant to a typical au-
tomotive perception system (relevant traffic safety requirements)?

2. What are the important parameters in the data curation process given
these specifications (data curation criteria)?

3. How to encode these safety specifications into the data labelling process
to make the deep learning training driven by the safety requirements
(annotation guideline encoding)?

4.2 Scope

Safety research and artificial intelligence are both very broad research areas.
In order to produce a set of meaningful annotations that reflect traffic safety
requirements, research question 1 needs to be addressed as the foundation of
the annotation guideline. In this feasibility study, we limit our focus to the
training and validation of perception AI systems with the purpose of crash
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avoidance. Given this scope, we further divide the research question 1 into
the following subquestions:

• How many different crash types are there?

• What type of initiation and dynamics causes the crash within each
type?

• What are the contributing parameters for each crash type?

Moreover, in order to translate traffic safety specifications into deep learn-
ing annotation guidelines, we limit ourselves to answers with the following
criteria:

• Relevance: the specifications shall follow established standards that
can be composed with standardized downstream analysis;

• Tractability: the specifications shall not cause combinatorial explo-
sion by adding a few new parameters;

• Measurability: clear key performance indicators (KPIs) can be de-
rived from these specifications;

• Feasibility: the specifications shall result in annotation guidelines that
can be easily implemented or translated into standard deep learning
annotations.

4.3 Other technical considerations

There are other technical questions that need to be answered as prerequisites
before the annotations can be produced, for instance:

• How to automate and scale up this annotation process?

• How to enable the data filtering machemism on terabytes or even
petabytes of data using a reasonable amount of computional resources?

In this project, we utilize our AI data platform SnapXS to achieve these
prerequisites. The automated annotation functionality of SnapXS is im-
proved thanks to this project.

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi

www.vinnova.se/ffi


FFI Public Report, 2021

5 Objective

AI algorithms are data-driven techniques and therefore it is crucial that the
safety specifications are encoded into the data set that the AI algorithms are
based upon. In this project, we aim to create such a safety-driven benchmark
data set that is ready-to-use for AI algorithm training and validation. The
resulting dataset contains sensor data logged in Sweden, together with ground
truth labels encoded with safety specifications. There are two intended use
cases:

1) deep learning algorithm development using the annotation guidelines
as meta data for filtering and data curation purposes; and

2) building end-to-end AI systems to capture the safety-driven annotation
guidelines.

In both cases, the annotation is aimed at being used for evaluations of the
algorithm given traffic safety KPIs, which in turns incorporates safety spec-
ifications in the AI development and validation process.

6 Results and deliverables

The project is divided into three work packages (WP):

WP 1: Data collection activities

WP 2: Safety-driven annotation guideline

WP 3: Automated annotation

6.1 WP1: Data collection activities

The data collection activity is divided into two parts: 1) controlled experi-
ments at the AstaZero test track, and 2) data collected on public roads in
urban and rural areas. Both collections are using the research vehicle from
the laboratory of Resource for vehicle research at Chalmers (REVERE).
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6.1.1 Controlled experiments at the AstaZero test track

The first part of the data collection is conducted at the AstaZero test track.
The test track and driving days were funded by the Open Research Pro-
gramme by Chalmers, RISE, and SAFER in collaboration with AstaZero.
The processing and analysis of the data is part of this project.

This data collection strives to provide edge cases for testing AI based
perception systems. Currently available public data is limited to normal
driving situations (e.g. KITTI or Waymo Open Dataset). Data that covers
edge cases like safety critical scenarios to test these systems is still lacking.
More specifically, these edge cases are derived from real world scenarios and
crash test configurations that lead to accidents caused by human drivers. The
created dataset provides ground truth and is aware of safety requirements
by also delivering KPIs to evaluate the perception system of AD/ADAS
functions.

In total, 164 tests that simulate accident pre-crash scenarios along with
non-crash reference tests are recorded at the AstaZero track. The selected
scenarios are based on accident data analysis, EuroNCAP and USNCAP
test configurations as well as real world accident pre-crash data from the
US ensuring relevance for real life safety. The specification of each scenario
describes the pre-crash phase which then is simulated in the tests. The
dynamic objects in the tests are real objects (e.g. no dummy cars) to mimic
realistic sensor data for visual perception systems in real world usage of
production cars.

The tests are comprised of:

• 71 city scenarios at a crossing, including different variations of turning
(42 scenarios) and crossing accidents (29 scenarios), with and without
occlusion by other cars or buildings;

• 93 rural scenarios of head-on accidents with different degrees of over-
lap on roads with curvature (63 scenarios) and without curvature (30
scenarios).

As a first step, virtual simulations of all pre-crash phases of the test scenarios
are created. Examples can be found in Fig. 1. Professional drivers from
AstaZero drove these scenarios according to the specification of the virtual
simulations in slow motion that is at half speed in the city and a quarter of
the speed on the rural road of the test track. Later, the data is time warped

FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi

www.vinnova.se/ffi


FFI Public Report, 2021

Figure 1: Virtual scenarios as a basis for the real tests: left reference non-
crash, right pre-crash.

to run at the original speed of the crash scenario. The cars stops very close to
the supposed collision of the ego vehicle. Each scenario varies with different
parameters such as speeds, angles, etc. One example setup can be found in
Fig. 2.

Figure 2: Examples of rural straight road scenarios: reference case (left)
versus collision case (right).

6.1.2 Data collected on public roads in urban and rural areas

The second part of the data collection is to collect data on public roads
around the Gothenburg area in Sweden. With this funding, we have col-
lected about 38 hours of data that amount to approximately 23 TB of raw
recordings.

The sensor data include 32-layer LiDAR point clouds, 5 image cameras
that covers around 200 degrees field-of-view mainly on the front, right and
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rear side of the ego vehicle. One alternative forward looking camera mounted
inside the windshield. A GNSS receiver, an IMU platform and a speedometer
for positioning and ego motion measurements.

These recorded trips are designed to be diverse in terms of the envi-
ronmental conditions, ego behaviors and target object properties. These
variables are derived from the safety specifications developed in WP2.

To protect personal information, the collected data is anonymzied using
our automated anonymization tools.

6.2 WP2: Safety-driven annotation guideline

To be able to define a set of safety-driven annotation guidelines that satisfy
the criteria in Sec. 4.2, the second work package is to research and experi-
ment with different sources of safety specifications. These specifications are
also discussed with various safety experts and stakeholders. As a result, the
main sources we have adopted are 1) the EuroNCAP/USNCAP test con-
figurations, 2) the crash analysis from the International Road Assessment
Programme (iRAP) and 3) the accident data from the iGLAD database,
where Asymptotic AI is a member and an active contributor. These specifi-
cations are then translated into deep learning annotation guidelines so that
KPIs can be evaluated from the algorithm output. The annotations produced
in this project are based on the guidelines developed in this work package.
The annotation guidelines can also be used as a stand alone reference in
safety-driven AI development. More detailed descriptions and analysis of
the specifications and guidelines will be presented in our publication.

6.3 WP3: Automated annotation

Given the established annotation guideline from WP2, the labels are auto-
matically generated using our AI data platform SnapXS. In this process,
we avoid human labors to increase efficiency and we also aim to minimize
computational resources for the automation.

6.3.1 Data preparation

To be able to select and search for any data point from any sensor for analysis
and annotation from terabytes of raw recordings, first, the collected data
needs to be preprocessed and structured. This is enabled by SnapXS.
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Figure 3: KPI lateral offset in the rural straight road scenarios.

6.3.2 AstaZero test track (cf. Sec. 6.1.1)

The test data collected at the AstaZero test track is annotated with the
precise ground truth that is required to derive the safety KPIs. The purpose
of the KPIs is to detect a collision threat as early and reliably as possible.

As an example, Fig. 3 shows the KPI “lateral offset” in the rural straight
road scenarios. The x-axis denotes the distance to the meeting point of the
cars and the y-axis represents the lateral offset, where zero distinguishes
between critical scenarios (below zero) and reference scenarios (greater than
zero).

Early warnings based on this KPI can already take place at 100 meters
distance to the meeting point. A late and urgent warning at up to ap-
proximately 40 meters indicates that the collision is not preventable on the
current course and immediate actions need to be taken which include emer-
gency braking, steering maneuver, signals (horn, light) or a pre-crash system
activation.

Example annotations can be found in Fig. 4 - 6. Fig. 4 shows the front
camera view of the ego vehicle in a rural straight road reference scenario,
where the target car is passing the ego vehicle in a straight line without any
interference. The KPI “collwarn” is based on the lateral offset of the ego and
the target car and shows constantly no warning throughout the sequence.

Fig. 5 shows a corresponding pre-crash scenario where the target car is
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Figure 4: Annotated reference scenario with KPI “collwarn” for collision
warning.

slowly starting to drift into the lane of the ego vehicle. The KPI “collwarn”
is already issued on a medium level at a distance of around 100 meters and
is then raised to a critical level at approximately 45 meters with a remaining
reaction time of around one second, which is shown in Fig. 6.

When benchmarking an AI visual perception system for the KPIs, the
given KPIs derived from the ground truth in the dataset need to be repli-
cated as closely as possible based on the corresponding video annotations
(3D bounding boxes) generated by the AI system. The accuracy of the AI
generated KPIs is then benchmarked against the ones calculated from the
ground truth.

6.3.3 Public road (cf. Sec. 6.1.2)

As opposed to the controlled experiments at the AstaZero test track, when
collecting data on public roads, we have no control over the precise location
and movement of dynamic objects in the surroundings. In this set up, the
labels on the data collected are automatically generated by aggregating in-
formation from all available sensors. The labels are generated based on the
following analysis:
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Figure 5: Annotated collision scenario with early and medium collision warn-
ing.

Figure 6: Annotated collision scenario with urgent collision warning, actions
need to be taken.

• Road estimation: a 3D model of road surfaces and drivable areas are
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estimated and extracted; one example is shown in Fig. 71, where the
reachable road of the ego vehicle is extracted from the collected data,
where static and dynamic objects are identified and removed.

Figure 7: The image on the top is a satellite imaging of a road segment from
Google maps (at approximately 57.7239327, 12.0173449). The image on the
bottom is the extracted ego road in 3D (with static and dynamic objects
removed) of that segment.

• Lane detection and modelling: to understand the traffic rules and safety
constrains, lane markings and road edges are detected and modelled;

• Dynamic object localization and classification: each dynamic object
within the range of the ego perception system is localized, classified
and modelled. The travelling heading and velocity of the target object
are annotated for evaluating safety related properties;

• Static 3D global map: the static surroundings are modelled as a 3D
map with semantic annotations; this will be used in future projects for
road infrastructure analysis;

• Multi-object tracking: the trajectory of each dynamic object is tracked
individually for KPI evaluations.

1Data providers: Google, Aerodata Internatinal Sruveys, CNES/Airbus, Lantmä-
teriet/Metria, Maxar Technologies
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To create these labels, we use a combination of model-based techniques

(e.g. signal processing, geometric modelling) and data-driven algorithms (e.g.
deep learning).

To demonstrate the annotations and how they are related to the safety
specifications, some examples are illustrated below.

According to the definition of a traffic crash, at least one vehicle is in-
volved and at least one person is injured or killed. Therefore, our primary
goal is to analyze the level of threats a vehicle poses to other road users and to
itself. To this end, we identify two main categories in terms of safety-driven
annotations: 1) occupancy and 2) trend. Occupancy indicates the space that
a target vehicle occupies and trend refers to the information that can be used
for predicting future occupancies. In this section, we briefly describe some
examples of occupancy and trend annotations.

Occupancy In this dataset, the occupancies of target vehicles are anno-
tated. In particular, the occupancy in relation to the lane marking is strongly
related to the intention and state of the road user.

One example can be found in Fig.8, where we demonstrate the following
annotations:

1) A 3D bounding box that encloses the vehicle is annotated, e.g. the
bounding boxes in Fig. 8. The white surface of the box indicates the
travelling direction. A close in example of the bounding box is shown
in Fig. 9.

2) A trajectory is annotated to indicate the location of each vehicle over
time in the global coordinate system, e.g. the band under each bound-
ing box in Fig. 8.

3) The drivable lanes are identified and modelled in 3D for further road
safety analysis, e.g. the blue markings in Fig. 8.

4) At each point in time on its trajectory, the occupancy of a vehicle in
relation to the nearest lanes is annotated, e.g. the cyan line next to
each bounding box in Fig. 8 and Fig. 10:

– If a vehicle is driving within a single lane, the occupancy is anno-
tated as the distance from the vehicle to the nearest lane markings
both to its left and right within the current lane, e.g. Fig. 10a.
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– If a vehicle is crossing a lane marking, such as a single broken
white line, the occupancy is annotated as the distance from the
vehicle to the lane markings that include both lanes, e.g. Fig. 10b.

The occupancy is annotated for various environmental factors, target ve-

Figure 8: Annotations of all recorded tracks on one road segment. Each
colored band represents the annotated trajectory of one vehicle. The blue
lanes are lane markings and the perpendicular lines indicate the occupancy
of the vehicle. In this example, the box is designed to enclose visible LiDAR
points to the sensors mounted on the ego vehicle. Annotations with estimated
box size are also available. The white surface indicates the travelling direction
of the car.
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Figure 9: Example of the bounding around visible LiDAR points from a
moving target vehicle. Note that here the points are from all LiDAR scans
registered into one object.

hicle conditions and ego behaviors to create different scenarios. These sce-
narios represent multiple threat levels from a traffic safety’s perspective. In
Fig. 11, one example of annotated lane change is presented from the birdeye
view. Examples shown in this section are extracted from the collected sensor
data described in Sec. 6.1.2.

(a) Vehicle travelling within a single
lane: the occupancy is denoted as the
distance to the nearest markings within
the current lane.

(b) Vehicle performing a lane change: the
occupancy is annotated as the distance
from the vehicle to the lane markings that
include both lanes

Figure 10: Occupancy of a vehicle in relation to lanes.
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Figure 11: Birdeye view of a target vehicle performing a lane change.

Trend This refers to a set of annotations that are aimed at aiding pre-
diction tasks and deriving the braking time and braking distance. Trend
annotations include information such as vehicle heading and velocity. This
information is provided in various forms including: 1) its absolute unit (e.g.
heading in the world coordinate system, velocity in meters per hour, etc), 2)
relative to the lanes, and 3) relative to the ego vehicle. Furthermore, envi-
ronmental factors, such as weather condition and road slipperiness, are also
part of the annotation. Users can then utilize these annotations to model
the trajectories of dynamic objects and predict their future occupancies.

Some examples of this type of annotations are demonstrated in Fig. 12,
13 and 14, where the example safety KPI “collwarn” is indicated 2. The
description and interpretation of this KPI can be found in Sec. 6.3.2.

More details on the modelling and specifications including the resources
used for the annotation process will be presented in our publication.

7 Dissemination and publication

7.1 Dissemination

The dissemination is shown in Tab. 1.

2The trend annotations are available in the same format as occupancy, but they are
best demonstrated in the image domain.
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Figure 12: Example of medium and urgent warning are demonstrated in this
image. The example traffic safety KPI “collwarn” depends on the relative
speed and reachability of the target vehicle in relation to the ego vehicle.

Figure 13: Example of reference case (no warning) is demonstrated in the
this image.
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Figure 14: A sequence of a target vehicle performing a lane change in front
of the ego vehicle. The sequence of images are annotated with the heading
and relative velocity to the ego vehicle. The “collwarn” signal (described in
Sec. 6.3.2) is indicated in the annotations.

7.2 Publication

A safety-driven benchmark dataset for deep learning training and validation
for crash avoidance, Yinan Yu, Samuel Scheidegger, Jörg Bakker, in prepa-
ration.

8 Conclusion and further research

In this project, we have created a set of safety-driven annotation guidelines
and a benchmark dataset for deep learning training and validation. This
dataset is automatically annotated using our AI data platform SnapXS. The
annotation guidelines are derived from traffic safety specifications. We are
currently investigating the licensing and resources available for hosting the
release of the dataset. We are also looking into various possibilities of data
sharing mechanisms between different actors in a more generic setting. This
dataset will be used for our future collaboration with the REVERE lab in
automotive research. Moreover, this dataset is served as a basis in an ongoing
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Table 1: Dissemination

How has / is the project re-
sult to be used and dissem-
inated?

Mark with x Comment

Increase knowledge in the
field

x Safety-driven annotation guidelines; auto-
mated annotation tool chain improvement
for automotive use cases.

Be passed on to other ad-
vanced technological devel-
opment projects

x The result is used as a basis for multiple
purposes. For instance, it is part of the
ongoing research applications on the sub-
ject of roadside infrastructure modelling
for improving road safety. In addition, the
result will be used in Vinnova project De-
carbonAIte (2021-02759) for energy effi-
cient urban planning and future collabora-
tions between REVERE and Asymptotic
AI on traffic safety research.

Be passed on to product de-
velopment projects

x The outcome of this project will be used as
a basis for the upcoming Vinnova project:
a quality validation toolbox for automo-
tive perception data towards trustworthy
AI (2021-02577). Furthermore, as a re-
sult of this project, we have improved the
automated annotation module of our AI
data platform SnapXS.

Introduced to the market The automated annotation functionality
of SnapXS is introduced to the market,
but the result of this project has mainly
been used for research and development so
far.

Used in investigations / reg-
ulatory / licensing / politi-
cal decisions

x We are investigating the licensing for the
dataset release.

research application on the subject of roadside infrastructure detection and
maintenance. Furthermore, the dataset and the annotation technology will
be applied in projects such as DecarbonAIte (Vinnova 2021-02759) for energy
efficient urban planning and data quality control for reliable AI (Vinnova
2021-02577).
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9 Participants and contact persons

Yinan Yu - Project leader
yinan.yu@asymptotic.ai

Samuel Scheidegger
samuel.scheidegger@asymptotic.ai

Jörg Bakker
jorg.bakker@asymptotic.ai
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