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FFI in short 

FFI, Strategic Vehicle Research and Innovation, is a joint program between the state and the automotive 
industry running since 2009. FFI promotes and finances research and innovation to sustainable road 
transport. 

For more information: www.ffisweden.se  

 

 



1. Summary  

The project aimed at combining core Industry 4.0 technologies of industrial IoT, digital 
twins and analytics to realize the full potential of predictive maintenance and pave the way 
towards prescriptive maintenance. The core idea was to supplement and validate data from 
existing IoT infrastructure with simulated data from lean digital twins, preprocess and 
integrate these multiple sources of data into the CMMS, and use machine learning, 
analytics and optimization techniques to monitor the health of equipment, thereby 
predicting the need for maintenance in advance. 
 
The project consortium is composed of (i) University of Skövde as the project coordinator, 
(ii) Chalmers University of Technology as the academic partner, and following five 
industry partners who will provide use-cases and support various project-related activities, 
(iii) Scania CV (iv) Volvo Cars Corporation (VCC) (v) Volvo Group Truck Operations 
(VGTO), (vi) Automotive Components Floby, and (vii) Jernbro Industrial Services. 
 
The project addressed six industrial use-cases across three problem domains: 
 Condition Monitoring of Ball-Screw Drives: This focused on detecting anomalies and 

estimating the Remaining Useful Life (RUL) of ball-screw drives in CNC machines. 
Ball-screw health data from multiple sensors were analyzed using signal processing 
and machine learning techniques. Significant progress was achieved in fault prediction 
and localization, though one use-case had limited analysis due to time constraints. 

 Fault Detection in Sheet Metal Glue Lines: This use case aimed to reduce false positives 
in detecting faults in sheet metal glue lines using vision sensor data. Unsupervised deep 
learning models were applied, along with data augmentation and robustness 
experiments, to improve accuracy and adapt to real-world conditions. 

 Fault Prediction in Hydraulic System: Predictive models analyzed MES and SCADA 
data to identify faults in hydraulic accumulators in CNC machine clusters. Techniques 
like SMOTE and machine learning models helped classify faults and identify critical 
predictive features, though data quality issues limited further progress. 

 
Through these use-cases, the project demonstrated how anomaly detection in predictive 
maintenance, enabled by IoT sensor data integration, advanced analytics, and machine 
learning, can improve maintenance operations. 
 

2. Sammanfattning på svenska 

Projektet syftade till att kombinera centrala Industri 4.0 teknologier som industriell IoT, 
digitala tvillingar och analys för att realisera den fulla potentialen hos prediktivt underhåll 
och bana väg för preskriptivt underhåll. Den huvudsakliga idén var att komplettera och 
validera data från befintlig IoT-infrastruktur med simulerade data från "lean" digitala 



tvillingar, förbehandling och integrering av flera datakällor i CMMS samt användandet av 
maskininlärning. Samt, analys och optimeringstekniker för att övervaka utrustningens 
hälsa och därigenom förutsäga underhållsbehov i förväg. 
 
Projektkonsortiet bestod av (i) Högskolan i Skövde som projektkoordinator, (ii) Chalmers 
tekniska högskola som akademisk partner och följande fem industripartners som 
tillhandahöll användningsfall och stöd för olika projektaktiviteter: (iii) Scania CV, (iv) 
Volvo Cars Corporation (VCC), (v) Volvo Group Truck Operations (VGTO), (vi) 
Automotive Components Floby och (vii) Jernbro Industrial Services. 
 
Projektet behandlade sex industriella fallstudier inom tre problemområden: 
 Condition Monitoring of Ball-Screw Drives: Fokus låg på att upptäcka avvikelser och 

beräkna den återstående livslängden (Remaining Useful Life, RUL) för 
kulskruvsdrivningar i CNC-maskiner. Hälsodata från flera sensorer analyserades med 
signalbehandling och maskininlärningstekniker. Betydande framsteg gjordes i att 
förutsäga och lokalisera fel, även om ett användningsfall hade begränsad analys på 
grund av tidsbrist. 

 Fault Detection in Sheet Metal Glue Lines: Detta användningsfall syftade till att minska 
falska positiva resultat vid feldetektering i limlinjer på plåtdelar med hjälp av 
sensordata från visionsystem. Oövervakade djupa inlärningsmodeller användes, 
tillsammans med dataaugmentation och experiment för att avgöra robusthet och 
förbättrad noggrannhet vid verkliga industriförhållanden. 

 Fault Prediction in Hydraulic System: Prediktiva modeller analyserade MES- och 
SCADA-data för att identifiera fel i hydraulackumulatorer i CNC-maskinkluster. 
Tekniker som SMOTE och maskininlärningsmodeller användes för att klassificera fel 
och identifiera kritiska prediktiva egenskaper, även om problem med datakvalitet 
begränsade vidare framsteg. 

 
Genom dessa fallstudier visade projektet hur avvikelsedetektering inom prediktivt 
underhåll, möjliggjort genom IoT-sensordataintegration, avancerad analys och 
maskininlärning, kan förbättra underhållsoperationer. 
 

3. Background 

Artificial intelligence, big data analytics, industrial internet of things (IoT) and digital twins 
are among the most important technologies driving Industry 4.0 transformation in the 
manufacturing sector. One of the areas where a combination of these technologies can bring 
significant improvements is predictive maintenance. The basic principle of predictive 
maintenance is to leverage real-time data coming from IoT devices such as sensors, 
transducers, cameras, switches and other instruments with approaches like statistical 
process control and machine learning to monitor the health of various manufacturing assets 
and predict when equipment anomaly or failure could occur. As opposed to reactive 



maintenance, where corrective actions are taken only upon the failure of assets, or 
preventive maintenance, where maintenance is done at regular intervals of usage, 
predictive maintenance aims at carrying out maintenance activities as close to the predicted 
end-of-life of parts or components as possible. There are several immediate benefits to 
implementing predictive maintenance systems, some of which are increase in equipment 
uptime and availability, which leads to increased productivity, and reduction in time 
required for planning and performing maintenance, which in turn can lead to a lean 
maintenance team and hence lower overall maintenance costs. Other consequential 
advantages are reduced maintenance inventory requirement, improved operational safety, 
a lean and efficient supply chain for spare parts and overall reduction in indirect emissions 
and thus carbon footprint. 
 

4. Purpose, research questions and method 

Early adopters of predictive maintenance systems face several key challenges that limit 
their potential. First, since real-time data is crucial, IoT devices must remain synchronized, 
connected, and operational throughout production. Second, the lack of interoperability 
standards among IoT devices from different vendors complicates data integration, 
requiring compatibility with existing systems like CMMS. Third, predictive analytics poses 
challenges, as customized models are often needed to handle diverse data types. Limited 
failure events also hinder training machine learning models for metrics like Remaining 
Useful Life (RUL) and failure risk. Lastly, selecting corrective actions and generating work 
orders is difficult due to poor data integration and unstructured maintenance records. 
Overcoming these challenges is critical to advancing digitalized maintenance in vehicle 
manufacturing. 
 
The four challenges described above can be formulated into the following research 
questions which have been the focus of this project: 
 RQ1. How can clean, continuous, and reliable data be obtained from industrial IoT 

devices despite their current hardware and connectivity issues? 
 RQ2. How can real-time IoT device data be integrated with multi-source multi-format 

data from other sources and made compatible with an existing CMMS? 
 RQ3. Which statistical and machine learning methods are best suited for predicting 

maintenance critical metrics like RUL, failure risk and machine reliability? 
 RQ4. How can appropriate maintenance actions be generated automatically and the 

associated work orders be optimized with respect to given resources, production plan 
and maintenance inventory? 

 
The methods used to address these research questions included workshop and factory visits, 
data collection, data quality assessment, statistical analysis, time-series analysis, signal 
processing, data integration procedures, simulated experiments, classification algorithms, 
image processing, computer vision techniques, deep learning methods, reinforcement 
learning, and multi-criteria decision analysis. 



5. Objective 

The project had the following six objectives connected to these research questions: 
 
O1. Supplement and/or validate IoT device data with lean digital twins 
Objective O1 involves the use of what we call “lean” digital twins, whose main purpose is 
to simulate the assets of interest with just enough detail to reproduce the actual IoT device 
signal in real-time for either supplementing chunks of missing data, or validating signals 
when devices are restarted or reconfigured after malfunction. Digital twins also allow 
simulation of pre-failure equipment behavior for diagnostics, virtual verification of 
maintenance tasks and operating conditions of new equipment. 
 
O2. Perform statistical time-series analysis and signal processing of IoT sensor data 
Objective O2 is needed to prepare raw sensor data for running analytics. It involves the use 
of time-series analysis for imputing missing data points, identifying intermittent and 
periodic trends, correlation analysis for dimensionality reduction, etc. Signal processing is 
also required for resampling the signal, perform time-frequency analysis for noise 
reduction, and feature extraction. These preprocessing techniques can later improve the 
reliability of predictive models. 
 
O3. Develop a global schema to integrate maintenance data into CMMS 
Objective O3 deals with merging different sources of data by developing a global schema 
(data model) which will enable different formats of data to be represented within a unified 
structure. Such data integration is necessary for analytics solutions to be scalable. In 
addition to sensors on physical machines and their digital twins, data can also come from 
other sources such as PLCs, Manufacturing Execution Systems (MES) or even from an 
Enterprise Resource Planning (ERP) system. 
 
O4. Employ machine learning to predict RUL and other maintenance metrics 
Objective O4 deals with the training and testing various machine learning algorithms on 
integrated data. Labeled pre-failure historical data is typically needed for training 
predictive models through supervised learning methods. However, since such data may not 
be readily available, either an unsupervised approach of anomaly detection or a 
reinforcement learning approach which relies on digital twins can be used. A balance 
between predictive power and explainability can also be achieved depending on specific 
needs in various use cases. 
 
O5. Generate automated maintenance actions based on historical work orders 
Objective O5 is focused on determining what type of maintenance activity should be 
undertaken for an impending problem with the equipment. This requires a record of 
historical work orders. In the ideal situation, generating maintenance actions could be as 
simple as locating the failure in a lookup table. However, if the work order database is 
unstructured or qualitative, the complexity of the tasks increases. Moreover, the 



relationship between failure and appropriate maintenance activity may not be as direct, in 
which case data mining methods have to be employed to find patterns.

O6. Optimize maintenance schedule to generate automated maintenance work orders
Objective O6 is related to optimizing the schedule for prescribed maintenance actions given 
the constraints of production plan, resource availability and personnel competence. The 
optimal solutions take the form of work orders to be executed. More than one conflicting 
objective may be involved in specific use cases, in which case multiple Pareto-optimal 
work orders can be found using multi-objective evolutionary algorithms. In this case, an 
additional decision-making step is needed.

These objectives can be grouped into the three typical stages of analytics as follows: (i) 
descriptive analytics (O1 and O2), predictive analytics (O3 and O4), and prescriptive 
analytics (O5 and O6). Taking the project as a whole, all six objectives have been fulfilled. 
However, objective O6 was only achieved in a hypothetical case based on the real 
industrial scenario. The use-cases handled in this project and the results for each are 
described in the next section.

6. Results and deliverables

The project dealt with the following six company use-cases over the three-year period:

UC1. AMC + PAS Condition Monitoring Data for Ball Screw (VGTO + Jernbro)
This use-case involved the use of data from Siemens SINUMERIK Integrate Analyze 
MyCondition (AMC) system, together with data from Jernbro’s Predictive Analysis Servo 
(PAS) system, to predict faults and estimate the remaining useful life (RUL) of CNC 
machine tool ball-screw drives. The ball-screw (see Figure 1) is a critical component of 
CNC machines as its degradation can severely impact the machining precision and quality 
of cylinder blocks and cylinder heads. The AMC system provides test cycles for equability, 
circularity, and universal axis tests that are periodically carried out on each machine, while 
the PAS system measures the current and voltage of the servo motors during these tests.
The equability axis test provides the torque/force measurements over the axis position. The 
circularity test results in a polar plot of the circular path for each of there machining planes 
and circularity-specific characteristics, such as deviation and hysteresis. Finally, the 
universal axis test determines the characteristics that define the coulomb and viscous 
friction characteristics, as well as the moment of inertia and a torque offset.

Figure 1: Schematic showing the key mechanical components of a ball-screw drive.



UC2. SICK Vision Sensor Data for Sheet Metal Glue Lines (Volvo Cars)
This use-case involved using grayscale images taken by the SICK Inspector PIM60 vision 
sensor for detecting faults in the glue lines deposited by a robotic arm on sheet metal parts. 
The SICK system includes a toolbox that can be detect deviations from a predefined 
geometry of the glue lines. However, due to the changing lighting conditions in the 
production environment and other factors such as vibrations and humidity, the system 
triggered unnecessary production stops based on flagged anomalies in images that turned 
out to be false positives (OK images of normal glue lines tagged as NOT OK). The 
company wanted to reduce the false positive rate using advanced deep learning techniques. 
In total, data for 20 distinct components, each containing approximately 300 images of size
480*640 pixels, were provided. There were no images of faulty glue lines in the datasets.
Figure 2 shows a schematic representation of the vision system. Figure 3 shows two images 
of normal glue lines – the one the left is tagged OK by the vision system, while the one on 
the right is tagged as NOT OK, probably due to a change in the lighting condition.

Figure 2: Schematic showing the operation of the vision system in UC2.

Figure 3: Images of normal glue lines tagged as OK (left) and NOT OK (right).

UC3. SPM Condition Monitoring Data for Ball Screw (Volvo GTO)
This use-case involved the use of vibration data measured by SPM Instrument 
accelerometers mounted directly on the ball-screw on each axis of the CNC machine. The 
company switched from using the AMC+PAS system data to SPM measurements in order
to reduce the time required for testing the condition of ball-screw drives. Another potential 



advantage of using accelerometer measurements is that the fault can be localized to either 
the nut assembly or the ball-screw, as well as along the length of the ball-screw. 

UC4. MaintMaster IoT Vibration Sensor Data for Ball Screw (AC Floby)
This use-case involved CNC machines where no health data was previously being 
collected. The company purchased multiple IoT vibration sensors from MaintMaster and 
mounted them as follows: (i) IoT1 (Portal cross slide motor), (ii) IoT3 (X-Slide), (iii) IoT4 
(Stand X-Axis), and (iv) IoT5 (Support Bearing Ball Screw X-Axis). The data from these 
sensors, as well as production volume data for a two-month period was provided. However, 
the vibration data was found to be too noisy and contaminated with environmental factors
to be used for predictive analytics. The IoT sensors also tended to go offline due to network 
connectivity issues, and this went unnoticed for some time as no notifications were setup.
Due to these reasons, this use-case was not pursued further.

UC5. MES + SCADA Data for CNC Machine Cluster (Scania)
This use-case involved the use of MES and SCADA data for a cluster of CNC milling 
machines to predict and classify faults in the hydraulic system, specifically in a component 
called the hydraulic accumulator. It plays a critical role in regulating oil pressure to ensure 
smooth operation. Any malfunction in the accumulator can lead to system-wide 
disruptions, resulting in machine stoppages and production delays. In a production line of 
interconnected machines, the operational status of each machine can be inferred from its 
interactions with neighboring machines. By examining how the state of one machine 
correlates with those of the machines immediately preceding and succeeding it, a clearer 
picture of its operational health emerges. This relationship, combined with extensive sensor 
data, forms the foundation for predicting and diagnosing faults. Figure 4 shows the cluster 
of machines whose MES and SCADA data were provided for fault analysis.

Figure 4: Cluster of CNC machines used for hydraulic accumulator fault analysis in UC5.

UC6. STMicroelectronics Vibration Sensor Data for Ball Screw (AC Floby)
This use-case involved a sensor setup and vibration data that is similar to those in UC3.
Therefore, the same analytics techniques could be applied. However, as this use-case 
started just three months before the end of the project, the analysis was somewhat limited.

In summary, (i) UC1, UC3, UC4, and UC6 dealt with anomaly detection and RUL 
estimation of ball-screws in CNC machines, (ii) UC2 dealt with anomaly detection and 



segmentation in images of sheet metal glue lines, and (iii) UC5 dealt with hydraulic 
accumulator fault prediction in a cluster of CNC machines. Figure 5 shows an overview of 
the type of research problems and data that were handled in the project altogether.

Figure 5: A summary of the research problems and data types handled in the project.

Table 1 shows the degree to which the six project objectives were achieved in each of the 
aforementioned use-cases. It can be seen that UC2 and UC3 were the most successful use-
cases, followed by UC1. Though the prescriptive analytics stage could not be reached in 
UC5 and UC6, adequate progress was made that provided valuable insights to the industry 
partners. As mentioned above, UC4 was discontinued due to the poor data quality. 

Table 1: Goal fulfillment in various use-cases of the project. Checkmark in parenthesis
represents partial fulfillment of the corresponding objective.

Use-Cases Industry Partners Descriptive Predictive Prescriptive
O1 O2 O3 O4 O5 O6

UC1 VGTO + Jernbro
UC2 VCC ( )

UC3 VGTO
UC4 AC Floby
UC5 Scania ( ) ( )
UC6 AC Floby ( ) ( )

The main challenge in achieving the project objectives in some use-cases was the delay in 
gathering relevant data for analytics. Reflecting on the project timeline, Table 2 highlights 
when the first dataset for each use-case was received and when the use-cases either ended 
or were discontinued. It is evident that use-cases with significant delays in data collection 
naturally experienced a lower degree of goal fulfillment. Some objectives that were 
partially fulfilled either involved hypothetical use-cases based on the real use-case from 
the companies, or had to be ended due to lack of time in the project.



Table 2: The timeline of the use-cases within the project duration. The starting point of the
use-case is denoted by , and the endpoint is denoted by . 

Use-Cases Industry 
Partners 

Project Timeline 
Dec.2021-Nov.2022 Dec.2022-Nov.2023 Dec.2023-Nov2024 

UC1 VGTO + Jernbro          Jul2022              Jan2023 
UC2 VCC                               Feb2023  
UC3 VGTO                                                        Oct2023  
UC4 AC Floby                                                    Sep2023           Feb2024 
UC5 Scania                                                        Oct2023  
UC6 AC Floby                                                                                       Sep2024  

6.1 Anomaly Detection and RUL Prediction in Ball-Screw Drives 

The proposed condition monitoring methodology in UC1 for ball-screw drives consists of 
four main steps: data collection, data preprocessing and feature engineering, model 
building, and anomaly detection. The machine tool drive system is operated under no-load 
condition at regular intervals to capture AMC health data. Subsequently, the data is 
preprocessed and features are extracted from raw signals using the discrete wavelet 
transform approach. The unsupervised machine learning technique, principal component 
analysis, is used to reduce the dimensionality of the dataset and find feature combinations 
that capture most of the variation in the data. Next, Hotelling’s T2 statistic is computed for 
each sample on a rolling basis, and anomalous behavior is detected based consistent 
deviations beyond the moving median of Hotelling’s T2 statistic. 
 
The Discrete Wavelet Transform (DWT) transforms a signal into different scale and shift 
parameters. It is implemented using a pair of low-pass and high-pass wavelet filters, using 
a selected wavelet function and its corresponding scaling function. The preprocessed 
signals are transformed using the DWT by selecting the optimal mother wavelet from the 
Python package ‘PyWavelets’. After decomposing a signal using the DWT with s levels, 
wavelet coefficients are obtained from each level. Energy, root mean square, and kurtosis 
are calculated for each level and included as features. Figure 7 shows a two-dimensional 
Principal Component Analysis (PCA) projection of the extracted features. From this figure, 
it is observed that normal and abnormal behavior occupy different regions of the first two 
PCs. Each region describes the corresponding degradation of the ball-screw over time. The 
monitoring samples A, B, and C show the normal behavior of the ball-screw. Furthermore, 
the monitoring samples D and E show an abnormal region, which is surrounded by the 
similar abnormal behavior of the ball-screw. 
 
Hotelling’s T2 statistic is shown in Figure 8 for each monitoring sample, with their 
respective threshold limit T2

limit. The T2
limit is observed to decrease rapidly and then 

constant, due to the increase in sample size of the training dataset. The monitoring samples 
B and C show high Hotelling’s T2 statistics, which can be taken after continuous operation 
of the machine. Therefore, it is necessary to base decisions on moving statistic of the 
Hotelling’s T2 statistic. The ball-screw is observed to be in a healthier condition before the 



monitoring sample D, but it started to deteriorate significantly afterward. There are 
consistent monitoring samples above T2

limit around the monitoring sample D, indicating the 
degradation of the ball-screw.

    Figure 7: PCA Visualization.

Figure 6: Proposed methodology in UC1.     Figure 8: Anomaly detection with T2.

A similar methodology for vibration data analysis in UC3 and UC6 was also proposed 
which includes the use of an additional calculated feature called Ball-Pass Frequency (BPF)
for fault isolation. 

6.2 Anomaly Detection and Segmentation in Glue Lines

Due to the unavailability of images of faulty glue lines, unsupervised deep learning models 
for anomaly detection were employed in UC2 to significantly reduce false positive rates.
A comparative evaluation was conducted on 17 unsupervised deep learning models for 
anomaly detection, spanning various categories and incorporating 28 backbones, using 



datasets of approximately 300 glue line images per part. To address the challenge of limited 
training data and improve generalization, data augmentation techniques were applied, and 
robustness experiments were performed to ensure applicability in real-world industrial 
conditions. Table 3 shows various image-level and pixel-level predictive performance 
metrics for the 17 deep learning models on one of the 20 components studies in UC2.
Figure 9 shows the segmentation results for some of the best performing deep learning 
models. Additionally, Figure 10 shows the inference times and throughput (number of 
images processed per second) of all models. Overall, the findings demonstrated that deep 
learning approaches effectively detect and localize anomalies, significantly reducing false 
positives and gluing machine downtimes compared to the existing system. A multi-criteria 
decision analysis approach was also used in UC2 for model selection, allowing decision-
makers to achieve optimal trade-offs between accuracy and inference time, thereby 
improving operational efficiency. 

Table 3: Predictive performance comparison of all deep learning models used in UC2.



Figure 10: Inference times and throughput of all deep learning models used in UC2.

Figure 9: Segmentation result for models stfpm, DSR, fastflow, and Efficient_Ad.



6.3 Anomaly Detection in CNC Machine Cluster

The approach incorporates data from MES and SCADA, including sensor measurement for 
vibration, compressed air levels, hydraulic temperature, and hydraulic pressure. There were 
some concerns regarding the data quality, but these could not be resolved within the 
remaining project time. The Synthetic Minority Over-Sampling Technique (SMOTE) is 
used to address data imbalance problem. Two different classification models, namely 
Random Forest and XGBoost, are employed to identify which features are most relevant 
to failure prediction. Table 4 shows the F1-score performance metric for these two models 
under various scenarios. The light signal features should ideally not be used for prediction. 
The extracted time-series features are also helpful for improving the prediction 
performance of both models. It can also be seen that SMOTE helps significantly improve 
the performance of Random Forests, with a slight deterioration for XGBoost.

Table 4: F1-scores for different data and feature scenarios.
Scenarios Random Forest XGBoost

With Light Signal Features
Without Time-Series Features 0.5833 0.9855

Without Light Signal Features
Without Time-Series Features 0.0571 0.3673

Without Light Signal Features
With Time-Series Features 0.1053 0.3077

Without Light Signal Features
With Time-Series Features
SMOTE

0.2174 0.3051

Figure 11 shows the feature importance scores obtained from the trained XGBoost model
for the top 10 features. Even though the predictive performance of the model is relatively 
low, the top features can be used to diagnose the root causes of the faults in the CNC
machine cluster.

Figure 11: Top 10 features extracted from the XGBoost classification model in UC5.



FFI’s Sustainable Production program identifies digitalization at various points within the 
value chain as a precursor to the true integration of sustainability perspectives. IoT enabled 
predictive maintenance, where large amounts of data are gathered and analysed to make 
decisions, is a form of digitalization that can have a positive impact on the structure of the 
production maintenance systems and associated supply chains from a life cycle perspective. 
All use-cases in this project dealt with anomaly detection using time-series and image data 
collected by IoT sensors. Anomaly detection is an important part of predictive maintenance 
as it is another step towards improving resource utilization and reducing wastage, in turn 
leading to higher productivity and shorter lead times. Thus, the results of this project 
directly contribute to the overall program goal. Additionally, FFI – Sustainable Production 
places high emphasis on research results that can be quickly translated to practical 
application. The use cases addressed in this project required close collaboration with 
industry partners. Real production and maintenance data collected during actual operations 
were used to test and validate the developed methodologies and algorithms. As a result, the 
deliverables of this project achieved Technology Readiness Levels between 4 and 6. 
 
‘Resource efficiency in production’ and ‘SMART production’ are two programme areas in 
FFI – Sustainable Production that this project has directly contributed to. Description of 
the former area specifically points to connecting equipment and systems, thereby enabling 
production resources to be optimized for a climate-neutral and competitive production. 
Similarly, description of the latter area refers to automating entire processes by combining 
data from different sources and analyzing it with AI techniques to give decision makers an 
optimal basis. The digitalization focus seen in these descriptions is analogous to the central 
contribution of the project results - IoT devices on production assets feeding real-time data 
to the CMMS, which is used by machine learning models to predict imminent anomalies 
or failures that are proactively corrected through automated maintenance actions, 
performed with an optimized schedule. Both programme areas also mention increasing 
competitiveness through an efficient production system as a challenge. The far-reaching 
benefits of predictive maintenance suggest that implementing the results of this project in 
production can lead to increased competitiveness in the long run. 
 

7. Dissemination and publications 

7.1 Dissemination 

How are the project results 
planned to be used and 
disseminated? 

Mark 
with 

X 
Comment 

Increase knowledge in the field X 

Ball-screw is a critical component of the 
CNC machines. The conditioning 
monitoring tests used in this project are 
common in many manufacturing facilities. 
The developed method can not only predict 



but also localize the faults, which has not 
previously been addressed in the literature. 
 
The thorough empirical comparison of 
unsupervised anomaly detection models on 
real industry use-cases does not exist in the 
literature. 

Be passed on to other advanced 
technological development 
projects 

X 

The project results are ready to be 
implemented in production. They will be 
passed on to internal development projects 
at the companies.  
 
New research project applications within 
the predictive maintenance area are being 
developed based on the project results. 

Be passed on to product 
development projects - Not applicable 

Introduced on the market - Not applicable 
Used in investigations / regulatory 
/ licensing / political decisions - Not applicable 

 
The results and learnings from this project have been communicated both internally and 
externally through meetings, presentations, and publications. Overall, all industry partners 
in the project are satisfied with the outcomes and have expressed interest in continuing the 
collaboration through future research projects. 
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Learning: A Use Case in Maintenance Prioritization. In 2024 Winter Simulation 
Conference (WSC) (pp. 1611-1622). IEEE.  
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Ballscrew Drive System using Vibration Data Analysis. 



Master’s Theses: 
 Nagarajan, A.V. & Janaswami, G. (2024). Data Synchronization in Digital Twin for a 

Lab-Scale Drone Factory. Department of Industrial and Materials Science. Chalmers 
University of Technology. http://hdl.handle.net/20.500.12380/308662. 

 Subramanian, S.K. & Hedin, L. (2025). Deployment of an Unsupervised Anomaly 
Detection Model Using Anomalib and PyTorch, Is it feasible on a low-powered edge -
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8. Conclusions and future research 

This project aimed to integrate core Industry 4.0 technologies – industrial IoT, digital twins, 
and analytics – to optimize predictive maintenance and pave the way toward prescriptive 
maintenance. By using IoT sensor data from real production, the project used machine 
learning, analytics, and multi-criteria decision analysis techniques to monitor equipment 
health and predict maintenance needs. The project focused on six industrial use-cases: 
condition monitoring of ball-screw drives, fault detection in sheet metal glue lines, and 
fault prediction in hydraulic systems. Ball-screws are vital components in CNC machines, 
and the condition monitoring tests used in this project are widely applied across various 
manufacturing facilities. The developed method not only predicts faults but also localizes 
them, a capability not previously explored in the literature. Additionally, a comprehensive 
empirical comparison of unsupervised anomaly detection models in real industry use-cases 
is lacking in existing research. These use-cases demonstrated the potential of predictive 
maintenance by leveraging IoT sensor data integration, advanced analytics, and machine 
learning to improve maintenance operations. 
 
The project's results align with FFI's Sustainable Production program, which emphasizes 
digitalization for improved resource efficiency and sustainable production systems. By 
analyzing time-series and image data from IoT sensors for anomaly detection, the project 
contributed to reducing unplanned downtimes thereby improving productivity and 
reducing wastage. The collaboration with industry partners ensured that real production 
data was used to test and validate methodologies, achieving TRLs between 4 and 6. The 
project's contributions to ‘Resource efficiency in production’ and ‘SMART production’ 
further support the goal of enhancing competitiveness and driving climate-neutral, efficient 
production systems through digitalization and AI-driven maintenance solutions. 
 
The project results are ready for implementation in production and will be passed on to 
internal development teams at the participating companies. Building on these outcomes, 
new research proposals focused on predictive maintenance are being developed with new 
and existing industry partners.  
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