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FFI in short 

FFI, Strategic Vehicle Research and Innovation, is a joint program between the state and the automotive 
industry running since 2009. FFI promotes and finances research and innovation to sustainable road 
transport. For more information: www.ffisweden.se  



1. Summary  

Predictive maintenance, an advanced maintenance approach, requires active condition 
monitoring models to estimate the health of the components, which in turn are used for 
maintenance planning. Current approaches include physics-based or domain knowledge-
based methods, which require significant effort to develop, and data-driven methods, 
which often lack robustness, adaptability, and interpretability. To address this, our project 
has aimed to develop robust, adaptable and interpretable data-driven methods for 
condition monitoring (CM), and to evaluate those tools on selected systems in Scania 
trucks. 
 
In this project, we have thus developed a set of complementary tools which addresses the 
challenges of machine learning (ML) for CM, specifically robustness, adaptability and 
interpretability. Some of the tools that were explored during the course of this project 
include: uncertainty quantification, causality, and counterfactual explanation approaches 
for ML models. Uncertainty quantification address robustness and adaptability, causality 
overlaps all the parts and counterfactual explanation for ML address interpretability.  
 
Our result from different tools are as follows: 

- Uncertainty quantification helps in disentangling knowledge uncertainty from process 
uncertainty, which clarifies the necessary action for the human users. Thus providing a 
measure of robustness for the model. 

- Causality approaches like causal discovery can be used to discover underlying causal 
structure in engineered systems. Which can later be used for downstream modelling. 

- Counterfactual explanation approaches for ML were improved for the application of CM.  
The results from our project indicate significant potential to address the challenges. These 
developed tools have been demonstrated using Scania data, public datasets, or both. 
 
 
 
 

  



2. Sammanfattning på svenska 

Avancerade underhålls-strategier, som tillståndsbaserat och prediktivt underhåll, förlitar 
sig på modeller för tillståndsövervakning, som kan uppskatta olika komponenters 
hälsotillstånd, vilket i sin tur används för underhållsplanering. Tyvärr finns utmaningar 
med de modeller som används idag: De som är använder sig av fysik-baserade simulatorer 
eller expertkunskap är väldigt arbetsintensiva att ta fram, medan de som är datadriva inte 
är robusta, anpassningsbara, eller förklaringsbara. Projektet har därför syftat till att utveckla 
robusta, anpassningsbara, och förklarbara maskininlärnings-metoder för 
tillståndsövervakning för underhåll, samt att utvärdera dessa metoder på data från utvalda 
delsystem i Scanias lastbilar. 
Vi har i projektet utvecklat ett antal verktyg för att hantera ovanstående utmaningar. Dessa 
verktyg inkluderar: 

 Osäkerhets-kvantifiering, för att skilja osäkerhet i den underliggande processen från 
osäkerhet i maskininlärningsmodellen (orsakad av tex för få eller lågkvalitativa 
träningsdata). Detta ger ett mått på modellens robusthet, och därigenom hur pålitlig den är, 
vilket är viktigt att veta när man ska basera beslut på modellen. 

 Metoder för att hitta kausala relationer i tids-serie-data från systemet som ska underhållas, 
och basera modellerna på dessa. Det kan ge robustare förutsägelser och bättre 
generalisering till nya situationer än traditionella maskininlärnings-metoder.  

 En metod baserad på “kontrafaktiska förklaringar”, som kan användas för att förstå den 
bakomliggande orsaken till en avvikelse i data. Detta är användbart när man ska identifiera 
och lokalisera fel som uppstår i systemet. 

Såväl syntetiska data som data från Scanias system har använts för att testa och utvärdera 
metoderna. Resultaten visar på en stor potential för dessa metoder att möta utmaningarna 
kring maskininlärning för tillståndsövervakning. 
 
 
  



3. Background 

Scania, a subsidiary of the Traton group and a manufacturer of heavy vehicles including 
trucks and buses. Scania has a vested interest in providing reliable products to its 
customers. One of the primary focuses is to enhance reliability through improved 
maintenance services, with predictive maintenance being a natural area of interest. 
 
Maintenance services can be categorized into three types: reactive, preventive, and 
predictive. Reactive services respond to events or failures as they occur. Preventive 
services, on the other hand, are performed at regular intervals based on operational or 
calendar time. Predictive services actively monitor the current state of components to 
provide relevant maintenance suggestions. Predictive maintenance requires continuous 
monitoring through advanced condition monitoring models.  
 

 
Figure 1, Illustration of modules involved in predictive maintenance process. Note: this illustration is one of the possible 
approaches to predictive maintenance. The sensor information is utilised by the condition monitoring model to determine 
the current health state of the component. This information is in turn taken used by RUL estimating model. 

Predictive maintenance encompasses different elements (illustrated in the Error! 
Reference source not found.): the data source (sensor information), the condition 
monitoring model, the remaining useful life (RUL) model and the maintenance planner. 
The condition monitoring model uses the sensor information to determine the current state 
of the component or system that it is monitoring. This information is in turn utilized by the 
RUL model which uses the historic utilisation to predict the future utilization and estimates 
the remaining time to failure. 
 



 
Currently, monitoring models could offer one of two types of health measures binary 
(healthy/unhealthy) or detailed heath index (somewhere between 1 to 0). The monitoring 
models are primarily physics-based, requiring intensive modelling through domain 
knowledge and inputs from subject matter experts, while providing detailed health index. 
These approaches become less feasible on a larger scale due to the number of components 
and systems that need to be monitored. An other approach, rule-based models, works well 
as simple health monitoring tools that indicate whether the current state is healthy or not. 
However, they could only provide binary health measure. 
 
Data-driven approaches for monitoring, which leverage statistics and machine learning, 
offer a solution by overcoming some of the limitations of physics-based and rule-based 
models. These data-driven approaches require less domain knowledge, less time from 
experts, and can provide binary and detailed health measures. However, machine learning 
models encounter challenges including sensitivity to spurious correlations, difficulties in 
interpretation, and limited adaptability, as they may not generalize effectively beyond the 
training data distribution. 
 
This project aims to develop robust, interpretable and adaptable ML for condition 
monitoring.  Robustness allows the models to have stable performance on different 
perturbation like attacks and noise modes, interpretability allowing the users of the model 
being able to understand the thought behind the models and finally adaptability allows 
learning new operating modes of the data which adapting to the new scenarios. We 
approached these problems with a set of tools including uncertainty quantification, 
counterfactual explanation and causality. 
 
 

4. Purpose, Research Questions and Method 

The primary objective of the project is to develop machine learning models for CM that 
are robust, adaptable, and interpretable. To achieve this objective, we have identified a 
series of research questions that address these three main themes. The research questions 
are as follows; 
RQ1. How does Uncertainty Quantification help condition monitoring? Can Uncertainty 

estimation be used for condition Monitoring (a binary health indexing case) and for RUL 
estimation? 

RQ2. Causality role in ML models, How can we obtain causal information from observable data? 
Can causality help in condition monitoring?  

RQ3. What are the limitations of current counterfactual explanation approaches to DL for 
anomaly detection (a simple binary health indexing case)? Can we improve the state of the art? 

 



Addressing these research question has contributed to the three main themes.  
Corresponding contribution of these research question to the main themes are marked in 
different region illustrated in Figure 2. 
 

 

 
Figure 2 The Venn-diagram has three parts, on for robustness, adaptability and interpretability. The contribution of the 
research questions to the theme is marked in the illustration. 

4.1. Method  

4.1.1 Data Sources 

This project utilized various data sources, both internal and external. Internal data were 
collected from field test trucks, focusing on systems such as the reductant pump, air 
pressure system, fuel system, and speed sensors. External sources included SKAB [1] and 
CMAPSS [2] datasets.  

4.1.2 Our Approaches 

Each of the research sub-question was addressed individually. The rest of this section 
describes the methods used to tackle these sub-questions.  
 
Uncertainty Quantification focused on two problems: 1) anomaly detection, using both 
simulated data from models and real data from Scania’s systems, and 2) Remaining Useful 
Life (RUL) prediction on the CMAPSS benchmark dataset. 
 
Causal models concentrated on the problem of causal discovery over time, in engineered 
systems, utilizing both simulated models and data from Scania systems. 



 
Counterfactual explanation of NN models focused on anomaly detection in a condition 
monitoring system, with experiments conducted on both Scania’s data and SKAB public 
data-set. 
 

5. Objective 

The objectives of the project are as follows: 
 Use casual models to build robust, reliable and interpretable condition monitoring leading 

to ML RUL model. 
 Test the developed approaches on Scania systems such as NoX sensor, reductant pump and 

particulate filter. 
The project was successful, with outcomes detailed in section 6 and the publication in 
section 7. Minor changes were made to the objectives; the updated version follows 
(changes italicised). 

 Build tools for robust, adaptable and interpretable condition monitoring leading to ML 
RUL model. 

 Test the developed approaches on Scania systems reductant pump, air pressure system, 
fuel system and speed sensors. 

 

6. Results and deliverables 

6.1 Results 

As previously discussed, the goal was to develop robust, adaptable, and interpretable 
machine learning models for condition monitoring. This was achieved through the 
development of various tools, including uncertainty quantification, causality, and 
interpretability 

6.1.1 Uncertainty Quantification 

Uncertainty quantification methods measure the uncertainty in model’s prediction. This 
tool address RQ1. This tool mainly contributes to the theme of robustness and partially to 
adaptability. Our publication (P1), focuses on quantifying the uncertainty bounds on 
model’s prediction. Here, we developed single stage model to predict RUL directly from 
sensor data skipping the monitoring model (refer Error! Reference source not found.). 
We utilized ensemble probabilistic neural networks to model the uncertainties, as the 
ensemble agreed where the data existed and otherwise where they lacked knowledge on. 
Our ensemble approach was able to disentangle the different sources of uncertainties, from 
knowledge and process (i.e. epistemic and aleatoric). Here, our experiments on CMAPSS 
public data showed that this dis-entangling is vital in decision making processes. The 
disentangled uncertainty provides knowledge on what inputs the model was less confident 



on, this information can be utilised to the data collection for model re-training. Later the 
developed method was also extended to anomaly detection case (i.e. a binary health index) 
for reductant pump use-case. Here, we additionally researched how the disentangled 
uncertainties could be utilized for fault diagnosis and retraining of models. 

6.1.2 Causality 

Causal models has been one of the tools that was not so straightforward in the application 
of condition monitoring. Causal models in theory should be able to help with all the main 
themes of the project goals. Some of the existing research has shown promises in this 
direction, Peters et. al [3] uses invariance to building adaptable models which can better 
the generalize outside the train space. Their modelling approach uses clear input and out 
feature space. However, the monitoring system requires total monitoring of the system 
rather than a specific feature. This brings us to understand the causal relationship between 
the feature space. Understanding these relationships from subject matter experts can be 
challenging as the knowledge about different parts exist in silos and never been studied in 
total. 
 
To address this causal discovery approaches to determine the causal relationship between 
variable from observable data. Some of current state of the art approaches for causal 
discovery were tested on Scania data. The causal graphs generated by these algorithms 
were not satisfactory as they failed to realize obvious connections. We further developed 
an approach which supplements current causal discovery approaches and enables causal 
discovery on time-series data. This supplement framework uses mutual information rate to 
identify the skeletal graph which can further be used by normal causal discovery.  

6.1.3 Interpretability 

Interpretability approaches for machine learning models were another focus area for the 
project, addressing RQ3. We observed that most existing tools for explainable ML were 
designed for tabular data, whereas our data sources from the truck were time-series in 
nature. 
 
To tackle RQ3, we selected a simple binary health index modelling method, an anomaly 
detection problem. Anomalies flagged by the model are usually hard to interpret due to 
several factors, including the necessity of knowing model's internal workings and having 
domain knowledge. To better understand why model flags a sample anomalous, we chose 
counterfactual explanations, which generate a "what if" scenario where the prediction is 
altered. Current state-of-the-art approaches generate counterfactuals by explaining the 
entire input space. However, anomalies in systems are usually caused by specific subsets 
of signals, making it impractical to explain the whole input space. 
 



Figure 3 Illustration of developed counterfactual explanation framework.

Our work, detailed in publication (P2), focused on addressing this problem in 
counterfactual in explanation by selecting the right set of features for generating 
counterfactual explanations. Here we built a framework (illustrated in Figure 3) where the 
module two feature selector takes in the anomalous sample and evaluate each feature if 
they need to be explained or not. Based on the selection form module 2 our explainer in 
module 3 provides counterfactual explanations. Our example scenarios demonstrated that 
the explanations provided by our approach were much more meaningful compared to 
conventional ones.

6.2 Deliverables

List of deliverable as mentioned in the application,
D1: Detailed review on current methods and models
D2: Data collection of real-time data form test-rig
D3: Data collection of vehicle real-time data
D4: First internal progress report
D5: First conference article submitted
D6: Second internal progress report
D7: Second conference article submitted

Almost all the deliverables were achieved as planned. Specifically, D1 and D3 to D7 
were completed successfully. However, the deliverable D2 (data collection from the test 
rig) was not executed because we managed to collect the data directly from the vehicles, 
rendering D2 unnecessary.



7. Dissemination and Publications 

7.1 Dissemination 

How are the project results planned to 
be used and disseminated?  

Mark 
with X 

Comment 

Increase knowledge in the field X This project has provided Scania with valuable 
insights into fault prognosis, adaptability, 
robustness, and interpretability. Additionally, it has 
advanced research by contributing to various 
scientific articles detailed in section 7.2. 

Be passed on to other advanced 
technological development projects 

X The knowledge about the project will be carried 
over to the second half of the industrial PhD 
project, where the student will pursue on building 
models for prognosing failures.  

Be passed on to product development 
projects 

  

Introduced on the market   
Used in investigations / regulatory / 
licensing / political decisions 

  

7.2 Publications 

The contents of this research project has been published over several publications. List of 
publication over thesis project, past conference and planned future conference are listed 
below 
 
Master thesis hosted during the same time on related topics. 

1. Nouri, Ali. "Causal Discovery for Time Series: Based on Continuous Optimization." 
(2023). 

2. Prasad, Deepthy, and Hampapura Sripada, Swathi. "Neural Network-based Anomaly 
Detection Models and Interpretability Methods for Multivariate Time Series Data." 
(2023). 

3. Singapura Ravi, Varun, “Counterfactual Explanation for Auto-encoder based Anomaly 
detection.” (2024). (Not published) 

 
Past Conference Publications: 

P1. Srinivasan, Abhishek, et al. “Ensemble Neural Networks for Remaining Useful Life 
(RUL) Prediction.” PHM Society Asia-Pacific Conference, vol. 4, no. 1, 4 Sept. 2023, 
https://doi.org/10.36001/phmap.2023.v4i1.3611. Accessed 6 Aug. 2024.  

P2. Srinivasan, Abishek, et al. “Counterfactual Explanation for Auto-Encoder Based Time-
Series Anomaly Detection.” PHM Society European Conference, vol. 8, no. 1, 27 June 
2024, pp. 9–9, https://doi.org/10.36001/phme.2024.v8i1.4087. Accessed 6 Aug. 2024.  

 



Future Publications (Planned): 

1. Srinivasan, Abhishek et al. Uncertainty Guided Diagnostics. 
2. Srinivasan, Abhishek et al. Mutual Information Rate for Time-Series Causal Discovery. 

 

8. Conclusions and Future Research 

The aim of this project was to develop methods for building robust, interpretable and 
adaptable ML models for predictive maintenance in the scope of an Industrial PhD. This 
project covers the first half of the PhD.  
 
Here we have developed an uncertainty estimation method for remaining useful life 
prediction (RUL) [P1], this method is based on an ensemble of neural networks, it 
decouples the aleatoric uncertainty from the epistemic uncertainty, making it possible to 
estimate the intrinsic uncertainty of the model (epistemic). This method helps to build more 
robust models, since we can pinpoint when a ML model is inferring from data out of the 
trained data distribution. This gives insights into knowing when to retrain a model to make 
it more robust and generic.   
 
Additionally, a counterfactual explanation method was developed to make models more 
interpretable [P2], we show that this approach has advantages over previous, especially to 
diagnose classified anomalies.  
 
Moreover, a systematic analysis of four systems and data collection has been done to 
evaluate the methods and further models in the second part of the PhD. First preliminary 
results using causal discovery methods have been achieved with the collected industrial 
data. 
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