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Kort om FFI 
FFI är ett samarbete mellan staten och fordonsindustrin om att gemensamt finansiera forsknings- och innovationsaktviteter 
med fokus på områdena Klimat & Miljö samt Trafiksäkerhet. Satsningen innebär verksamhet för ca 1 miljard kr per år varav 
de offentliga medlen utgör drygt 400 Mkr. 
 
För närvarande finns fem delprogram; Energi & Miljö, Trafiksäkerhet och automatiserade fordon, Elektronik, mjukvara och 
kommunikation, Hållbar produktion och Effektiva och uppkopplade transportsystem. Läs mer på www.vinnova.se/ffi. 
 
  

http://www.vinnova.se/ffi
http://www.vinnova.se/ffi
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1 Sammanfattning 
Vid tillverkning av fordon (lastbilar, bilar etc.) är ytbehandlingsprocessen i hög grad 
automatiserad, med undantag av kvalitetskontrollen som i stor utsträckning sker 
manuellt. Volvo Group Truck Operations (GTO), som är en del av Volvo Group har 
tillsammans med Umeå Universitet och Volvo Cars identifierat ett behov av att införa ett 
automatiserat kvalitetssystem för inspektion och rotorsaksanalys av målade karosser. 
Detta för att minska produktionskostnaden, minska miljöpåverkan samt skapa ett 
långsiktigt samarbete mellan Umeå Universitet och svensk fordonsindustri. 
 
Projektet FIQA består av två arbetspaket: WP1 - Defektdetektering och klassificering 
samt WP2 - Alarmsystem och rotorsakanalys. 

  
WP1 har utvecklat ett Computer Vision system baserat på tekniken Phase Measuring 
Deflectometry (PMD). En stor mängd annoterat bilddata har samlats in i Volvo GTOs 
produktionsanläggning i Umeå, där hytter till Volvo Lastvagnar produceras. Datat har 
använts för att träna och testa klassificerare och även för att utvärdera dess 
prediktionsförmåga. Vi har utvecklat en statistisk inlärningsmetod för att upptäcka 
defekter, inklusive bildtagning, extraktion och defektklassificering. Den utvecklade nya 
metoden ger inte bara noggrann och pålitlig klassificering utan ger också en 
osäkerhetsbedömning av klassificeringsresultaten. 
 
WP2 har bidragit med att bygga ett koncept för ett automatiserat alarm- och 
rotorsaksanalys, inklusive datainsamling, konstruktion av hyttspecifika variabler, 
validering av variabler samt modellering av kvalitetsutfallet. Från ett stort antal sensorer 
från produktionsprocessen mäts olika processvariabler i realtid och detta används sedan 
för att övervaka kvaliteten på målade hytter och för att analysera orsakssambandet när 
defekter uppstår. 
 
De utvecklade metoderna är generiska och kan tillämpas i svensk bilindustri. 
 
Ett pilotsystem har byggts inom måleriet i hyttfabriken. Systemet hittar och klassificerar 
defekter online i produktion med nästan 100% noggrannhet för två defekttyper på en del 
av hytten. Ett system för alarm- och rotorsakanalys byggdes också genom att ansluta 139 
sensorer online till systemet. Detta system är mer av konceptuell art, eftersom 
produktionssystemet inte tillåter överföring av större datamängder utan några större 
investeringar. Fortfarande anses resultaten vara mycket lovande, eftersom vi har visat att 
ett sådant system kan byggas, om än i mindre skala. 

 
FIQA-projektet har potential att minska produktionskostnader för kommersiella fordon 
genom att sänka tillverkningskostnader, minska behovet av reparationer och justeringar 
(minskad miljöpåverkan), generera stabilare kvalitetsutfall samt minska antalet falska 
larm. 

 
FIQA har lett till omfattande samarbeten mellan Volvo GTO, Volvo Cars och Umeå 
Universitet och resulterat i ett antal vetenskapliga publikationer och examensarbeten av 
hög kvalitet. Samarbetet mellan den svenska fordonsindustrin och Umeå Universitet har 
gjort det möjligt för universitetet att utveckla kurser och program som är mycket 
relevanta för fordons- och tillverkningsindustrin. Att utbilda studenter av hög kvalitet är 
avgörande för den svenska bilindustrins framtid. 

 
 
 
  

http://www.vinnova.se/ffi


 
 

 

 
FFI Fordonsstrategisk Forskning och Innovation| www.vinnova.se/ffi  4 

2 Executive summary in English  
Surface treatment (production) of commercial (trucks, cars, busses etc.) bodies is highly 
automated except for the inspection, evaluation of what to repair and root cause analysis 
to avoid production disturbances. 
 
The FIQA projects aims to develop an automated system to find and classify defects in a 
paint shop environment and a predictive root cause and alarm system to minimize 
disturbances. This will increase the quality level, stabilize the quality level and lower 
cost. This will strengthen the competiveness of the Swedish automotive industry and 
strengthen then research and innovation climate. This will also lead to an increased 
cooperation within the academy and the industry. 
 
The project consists of two work packages: 

• WP1 - Defect detection and classification 
• WP2 – Alarm system and root cause analysis 

 
In WP1, we have developed a statistical learning approach for defect detection on 
painted cab surfaces, covering image acquisition, feature extraction and defect 
classification. The aim is to develop an approach that not only produces accurate and 
reliable classification but also provides uncertainty assessment for the classification 
results. To accomplish this we build feature descriptors using regression spline ideas 
applied to grey intensity pixel values of the acquired images. As the inspection of 
specular surfaces inflicts special challenges, PMD technique using reflected sinusoidal 
fringe is applied to capture images of the considered surfaces. Classification is then 
achieved using a probabilistic classification algorithm based on k-NN classifier. 
 
We’ve focused our efforts on the two most common defect types: dirt and crater. An 
image acquisition and annotation Graphical User Interface (GUI) was created and 
implemented in to facilitate an extensive data collection. The data collection consists of 
images from cabs in production along with annotated defects. Images from 20527 cabs 
was collected. The dataset was divided in two parts one for training and validation.  
 
Our results shown that almost 100% of defect detection and 0% of false alarms are 
achieved when applying the proposed approach.  Equivalently, nearly all patches with 
both crater and dirt were correctly classified, and no defect-free patch was predicted as 
defective.  
 
The developed statistical learning approach is generic and can be applied to similar tasks 
and therefore it is of strongly relevance to the Swedish automobile industry in general. 
 
Within WP2 we have developed methods and procedures for data collection, 
construction of cab-specific process variables, modelling of quality and alarm and root 
cause analysis. We have collected raw data for a period of 65 weeks, including data from 
more than 80,000 cabs, 700 sensors, 100 categorical variables and 100 quality variables. 
Altogether close to 1 billion observations were collected. 
 
The collected raw data are unstructured and need to be structured in order to enable 
modeling of different quality variables (the response variables). We have developed a 
novel approach that combines senor and tracking data to construct a set cab-specific 
process variables. Altogether more than 3,000 cab-specific process variables (CPVs) 
were constructed and observed on more than 80,000 cabs.  
 

http://www.vinnova.se/ffi
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The relationships between the CPVs and the quality variables (for example indicators for 
dust and crater defects) were initially modelled using univariate approaches resulting in 
further pre-processing of the data as well as some basic understanding on how different 
sub-processes influence quality. Two interesting results were that sanding by machine 
increases the risk of crater defects later in the process and that cabs spending long time in 
some of the buffer zones have an increased risk of having dust defects.      
 
The idea behind the large scale modelling is that the risk of a certain type of defect (e.g. 
craters) can be described as a function of the CPVs. Several approaches, including both 
machine learning and statistical learning, have been used for modeling the risk of having 
defects and the results show that the predictions to high degree mimic the empirical data.  

 
In the Volvo Group Truck Operations (GTO) production plant in Umeå, cabs for Volvo 
Trucks are produced. At the production plant, a pilot system was built within the paint 
shop. The system finds and classify defects online in production with nearly 100% 
accuracy for two defect types on a 0.2 m2 surface. A concept system for an alarm system 
and root cause analysis was also built by connecting 139 sensors online into the system. 
The alarm system setup is more of conceptual art, as the production systems don’t allow 
big data handling without some bigger investments. Still the results are considered very 
promising, as we’ve proved that such a system could be built in theory. 
 
The FIQA project has delivered the desired pilot system, meeting most of the 
specifications, and has in addition generated general knowledge, specific improvements 
and a platform for future research.  
 
The FIQA-project has the potential to reduce the conversion costs of commercial 
vehicles by: lowering labor cost, reducing the need of repair and adjustments (reduced 
environmental impact), generating a more stable quality, reducing false alarm costs, 
enable a more effective update of the production process. 

 
FIQA has resulted in a successful long-term collaboration between Swedish automotive 
industry and academia with focus on automated quality control systems based on high-
dimensional data and signal processing and statistical learning methods. It provides also 
a foundation for future collaborations and research applications including grants from 
EU. The research conducted in FIQA is innovative and internationally competitive. 
 
FIQA has led to extensive collaborations between Volvo GTO, VC and UMU and 
resulted in a number of high quality scientific publications and master thesis projects. 
The closer collaboration between the Swedish automotive industry and UMU has 
enabled and encouraged the University to develop courses and programs that are highly 
relevant for the automotive and manufacturing industry. To produce high quality master 
students is crucial for the future of Swedish automotive industry.  

 
  

http://www.vinnova.se/ffi
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3 Background 
Surface treatment (production) of commercial (trucks, cars, buses etc.) bodies is highly 
automated except for the inspection and evaluation of what to repair and adjust. Today 
quality inspection and evaluations are commonly performed manually by operators 
(inspectors). The inspector identifies and describes defects (Detection), determines if and 
how the defects should be repaired (Evaluation and Repair instructions), and alarms if 
defects occur too frequently (Alarm) in which case an investigation, aiming to 
identifying the root causes, is initiated (Root cause analysis). Manual inspection and 
evaluations leads to very high costs connected to inspection, repair of defects and 
identification of root causes. The main cost drivers are manning (manual inspection and 
evaluation) and production losses (due to unneeded and extra repair work).  
 
To be able to replace the manual inspection, minimize the consequences of defects, and 
improve the quality of delivered products to customers with a more efficient and 
automated quality control system. Volvo Group Truck Operations (GTO) as a part of 
Volvo Group, has together with Umeå University (UMU) and Volvo Cars (VC) 
identified a need for a research and development project within the quality inspection 
and repair of painted vehicle bodies. 
 
Automated statistical process quality control systems based on real time data from a 
large number of sensors, including 2D and 3D cameras have successfully been 
implemented in production processes including surface treatment of vehicle bodies, for 
instance in The Ford Motor Company. 
 
Developing and implementing an automated system for monitoring production quality is 
a highly interdisciplinary task that requires expertise from several areas. Within the 
project we have expertise in surface treatment of vehicle bodies (Volvo GTO and VC), 
statistical process quality control (Volvo GTO, VC and UMU), machine color-based 
vision and image analysis (UMU), classification and pattern recognition (UMU), and 
multivariate analysis of high-dimensional spatiotemporal data (UMU). The proposed 
research project FIQA (Finish Inspection and Quality Analysis) covers the quality work 
connected to detection and evaluation of surface finish defects within the manufacturing 
of painted vehicle bodies. 

  

http://www.vinnova.se/ffi
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4 Purpose, research questions and methodology 
In this chapter, two work packages will be described 

4.1 WP1 - Defect detection and classifications 
 
Purpose:  
Develop a pilot Automated Quality control System (AQS) for detection of defects: 
automated inspection, detection and description of surface finish defects, and determine 
if the defect needs to be repaired or not. 
 
AQS specification and review of available monitor systems: 
Clarify which defects are relevant to be detected with AQS, how fast needs AQS to 
operate, how AQS will need to interact with other systems. Identification and review of 
available systems to monitor quality and detect defects (advantages, limitations and costs 
for implementing the system).  
 
Description of the modelling approach: 
Machine color-based vision and image analysis together with advanced statistical 
modeling of high-dimensional spatio-temporal data can be very useful for image 
segmentation and pattern recognition, e.g. recognizing defects on painted vehicle bodies. 
The apparent color of an object depends on various factors and color-based machine 
vision can be broadly categories in developing computational color constancy algorithms 
and related classification algorithms. An analysis based on only one image/sensor is 
often insufficient and therefore combining data from multiple sensors is crucial to obtain 
the desired information. In this work, we will employ various types of classification 
procedures and computational color constancy modeling to develop an AQS that enables 
automated detection and description of defects.  

AQS will for specified time (training period and test period) run in parallel with manual 
inspections, resulting in data collection consisting of manually identified defects 
(response data), raw data from AQS (explanatory image data) and data collection from 
the production process (explanatory production data). A classifier will be obtained using 
state-of-the-art statistical methods and the observed training data (response data, 
explanatory image data and explanatory production data). The performance of the 
classifier will be evaluated using the test data, with respect to its ability to predict and 
describe different types of manually identified defects and not least the uncertainty of 
these predictions. The modelling approach will for any type of surface abnormality 
estimate the probability that this deviation corresponds to a certain type of defect. These 
types of estimations will be based on a continuous test variable that measures quality at a 
higher resolution than the manual inspection does, which in turn can be used to 
monitoring quality over time, determining which defects should be repaired and to 
improve alarm detection. 

Pilot system – Detection of defects: 
Make a model (pilot) of a system to be used to test its application. This includes setting 
up AQSs and conducting data collection and modelling as described above.  
 
Implementation costs: 
Summarize investment and start-up cost for an implementation  
 
Standardize way of working:  
Describe the new way of working including necessary support to run the new system. 

http://www.vinnova.se/ffi
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4.2 WP2 – Alarm and root cause analysis 
 

Purpose:  
To identify sources that contributes to variation in quality (in particular defects) and 
develop an automated system that alarms if the production quality is drifting. 
 
Production data: 
Determine what production, process and product data (explanatory production data) can 
be collected, together with the AQS-data and the manual inspection data. Determine 
what type of generic data base should be used. Identify needs to implement new or 
change existing standards or demands. 
 
Root cause analysis: 
AQS measures quality at different scales: it predicts defects and measures quality at a 
continuous scale with some test variable T (quality response), where T can be a vector 
addressing different aspects of quality. Statistical techniques based on multivariate 
regression and correlation will be used to link the quality response T with the 
explanatory production data and to identify exploratory variables that impact the final 
quality. Note that the exploratory variables can be both continuous and categorical, and 
the interaction terms between these variables can also be a part of root cause. Options for 
variable screening or feature selection enable us to screen exploratory variables for root 
cause analysis as well as the methods that can be used to find the exploratory variables 
that are important. In general, predictor statistics can be computed by the respective 
method, and then predictors can be ranked based on the method-specific measure of 
predictor importance. There are a number of existing methods that may be appropriate 
for our purpose, such as generalized linear model, classification and regression trees, 
boosted trees, multivariate regression splines, neural networks, etc.  
 
To most efficiently find desired improvements and examine the interactions of 
exploratory variables statistical design of experiments (DOE) is of key importance. DOE 
can be used to find the optimum process parameters for a defined use environment or 
adapt it to find a robust design that is well-suited for a range of use environments. 
Furthermore, our DOE should also take spatiotemporal structure of data into 
consideration. 
 
Alarm algorithm:  
Specify when the system should alarm and what data the system should be based on (e.g. 
observed defects or some test variable T). 
 
Pilot system – Root cause analysis: 
Identify and organize the production data and the AQS-data in a data base. Apply a root 
cause analysis as described and identify sources contributing to variation in quality and 
correlated with defect frequency. Make a report model to visualize the root causes. 
Evaluate existing Key Performance Indexes (KPI) and propose new or changed KPI’s 
 
Implementation costs:  
Summarize investment and start-up cost for an implementation 
 
Standardize way of working:  
Describe the new way of working including necessary support to run the foreseen new 
system 

 

http://www.vinnova.se/ffi
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5 Objectives 
The FIQA project will deliver results linked to Swedish automotive industry, method 
development and evaluation within the area of automated defect detection, automated 
alarm system and root cause analysis (Development and evaluation of methods), and 
results linked to the general task of implementing an automated quality control system 
(AQS implementation). 
 
Results directly linked to Swedish automotive industry: 
− Design and develop test systems for defect detection. 
− Design and develop models for automated alarm and root cause analysis. 
− Develop a prototype and build a pilot system for automated defect detection, 

automated alarm and root cause analysis that is evaluated in production environment. 
− Deliver a specification for implementation of a complete system based on the 

research results. 
 
Results connected to development and evaluation of research methods: 
− Evaluate various sensors (e.g. 2D and 3D cameras) and classification methods for 

identification of manually identified defects. This work should result in research 
papers that shall be submitted to high quality scientific journals and presented on 
international scientific conferences. 

− Develop and evaluate methods for automated alarm and root cause analysis that 
utilize the data obtained from the automated quality inspection. This work should 
result in research papers that shall be submitted to high quality scientific conferences 
and journals and presented on international scientific conferences. 

 
Results connected to general implementation of an AQS: 
Propose general instructions and standards on how to implement AQS for manufacturing 
industry. This is an ambitious task, but we intend to present what worked and did not 
work with the FIQA-approaches for setting up an AQS at Volvo Umeå and give 
qualitative and quantitative results showing how these approaches can be applied in 
general. This work should result in a case study report of the FIQA project. 
 
The proposed research project will contribute to the prioritized aims of the strategic 
vehicle research and innovation (FFI): sustainable production technology (sv. Hållbar 
produktionsteknik), surface treatment and painting as stated below. 

 
FFI-1: To enhance research and innovation capacity in Sweden and thus secure the 
competitiveness of the Swedish automotive industry.  
 
The FIQA-project has the potential to reduce the conversion costs of commercial 
vehicles by: 

a) lowering labor cost  
b) reducing the need of repair and adjustments (reduced environmental impact) 
c) generating a more stable quality 
d) reducing false alarm costs 
e) enable a more effective update of the production process 

 
FFI-2: To develop internationally connected and competitive research and innovation 
environments in Sweden.  
 
The Volvo GTO’s production plant in Umeå, cabs are producesd for Volvo Trucks. This 
production plant is among most modern and technologically advanced production units 
within the Volvo Group with well trained and highly skilled personnel. At Umeå 

http://www.vinnova.se/ffi
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University several research groups (from the Department of Mathematics and 
Mathematical Statistics and the Department of Applied Physics and Electronics) will be 
part of the FIQA-project and contribute with expertise in areas linked to Automated 
Quality control Systems. This includes expertise in: machine based vision, image 
analysis, statistical process control, and analysis of high-dimensional spatio-temporal 
data. The FIQA-project has the potential to result in a successful long-term collaboration 
between Swedish automotive industry and academia with focus on automated quality 
control systems based on high-dimensional data and signal processing methods. We 
believe that the FIQA project builds a foundation for future collaborations and research 
applications including grants from EU. 
 
FFI-3: To promote cooperation between industry and universities, colleges and 
institutes.  
 
In the short perspective, the FIQA-project will lead to extensive collaborations between 
Volvo GTO, VC and UMU, which will result in an increased number of high quality 
scientific publications and master thesis projects. In the longer perspective a closer 
collaboration between the Swedish automotive industry and the involved departments at 
UMU, will enable the University to develop courses and programs that are highly 
relevant for the automotive and manufacturing industry. 
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6 Result and target compliance 
FIQA has successfully built two pilot systems, for automated defect detection and 
classification and for alarm systems and root cause analysis, respectively. The developed 
methods are generic and can be applied to Swedish automotive industry.  

 
WP1 developed a computer vision system based on the phase measuring deflectometry 
(PMD) technique, including a test system, followed by a pilot system. A large amount of 
image data and annotation data was collected for training and testing our classifiers and 
also for evaluation of the prediction ability. We have developed a statistical learning 
approach for defect detection, including image acquisition, feature extraction and defect 
classification. The developed novel approach does not only produce accurate and reliable 
classification but also provide uncertainty assessment for the classification results. 

 
WP2 has contributed to build a proof of concept for Volvo GTO’s paint process in 
Umeå, including data collection, construction of cab specific variables, validation of 
variables, modelling the quality and developing an automated root cause analysis system. 
From a large number of sensors on the production line various process variables are 
measured and in real time and then utilized to monitor the quality of painted cab bodies 
and to analyze the causality when defects occur.  
 
One of main challenges for coming work is to scale up the established pilot system to the 
whole cab body and develop a real time system for defect detection and classification 
with an efficient and automated statistical process quality control system. 

 
FFI Target Compliance 
  
FFI-1: To enhance research and innovation capacity in Sweden and thus secure the 
competitiveness of the Swedish automotive industry. 
The FIQA-project has the potential to reduce the conversion costs of commercial 
vehicles by: 

a) lowering labor cost  
b) reducing the need of repair and adjustments (reduced environmental impact) 
c) generating a more stable quality 
d) reducing false alarm costs 
e) enable a more effective update of the production process 

 
FFI-2: To develop internationally connected and competitive research and innovation 
environments in Sweden.  
FIQA has resulted in a successful long-term collaboration between Swedish automotive 
industry and academia with focus on automated quality control systems based on high-
dimensional data and signal processing and statistical learning methods. It provides also 
a foundation for future collaborations and research applications including grants from 
EU. The research conducted in FIQA is innovative and internationally competitive. 
 
 
FFI-3: To promote cooperation between industry and universities, colleges and 
institutes.  
FIQA has led to extensive collaborations between Volvo GTO, VC and UMU and 
resulted in a number of high quality scientific publications and master thesis projects. 
The closer collaboration between the Swedish automotive industry and UMU has 
enabled and encouraged the University to develop courses and programs that are highly 
relevant for the automotive and manufacturing industry. To produce high quality master 
students is crucial for the future of Swedish automotive industry. 

http://www.vinnova.se/ffi
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Figure 1: A sketch of the deflectometry-based image acquisition process. At the bottom left, the 
distortions of the sinusoidal patterns show that there is a defect on the surface. 
 

 

6.1 WP1 – Find and classify defects 
A summary of the results from WP1 is presented below, together with coming 
challenges for the continuing work. Details are referred to our technical reports and 
publications [1-4].  

 
A. Computer vision systems  

 
The computer vision algorithm we have developed during FIQA-WP1 is called 
Phase Measuring Deflectometry (PMD) as shown in Figure 1.  

 
The PMD is a technique which utilizes a reflected sinusoidal pattern to obtain surface 
local slope, which can be further processed to calculate surface 3D shape. PMD is the 
well-known technique for analyzing specular surfaces like, lenses, mirror, reflectors 
and car-body. The truck surface at Volvo facility, Umeå possess similar specular 
quality. Therefore, we have used this technique to find defects in painted truck body.  
 
In PMD technique, sinusoidal patterns generated by computer are displayed on the 
screen and these patterns are then projected on the truck-body and then reflected 
patterns from the truck body are recorded by the camera. 

 
 

http://www.vinnova.se/ffi
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Figure 2: Various setup evaluation table. One can see that PMD method is the most suitable 
method when it comes to ‘dirt’ and/or ‘crater’ detection in painted surfaces. 
 

 
In this project, we evaluated various imaging methods for specular surface defect 
detection epically painted surfaces. The results are shown below in Figure 2 from our 
various setup for detection [21]. 

 
From these investigations, we have concluded that a PMS setup based on three parts 
(namely- 1) Monochrome camera 2) Kowa lens 3) Sinusoidal pattern display) is good 
enough for our purpose of defect detection in painted surfaces. Figure 3 shows our 
PMD setup. 
 

 
 

 
 

 
 

 
 
 

 
 
 

 
 

 
 

(a)                                                   (b) 
 
Figure 3: Our PMD setup based 1) Monochrome camera 2) Kowa lens 3) Sinusoidal pattern 
display. a) Prototype design b) schematic measurements. 
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The dataset from our PMD setup is used for both 1) statistical learning methods and 
2) direct deflectometry machine vision method.  In first part, we have developed 
various statistical learning methods for efficient classification of defects. The second 
can be used to assist the statistical learning methods and AR/VR based visualization 
method to assist the operators for better identification of detect.  
 
One test system followed by one pilot system based on PMD technique have been 
built during the project. 

 
 

B. Data collection 
 

a) Defect type 
There are many different types of defects that can occur on painted vehicle bodies. 
The most common defect types are dirt and crater, thereby this report will focus only 
on these two defects. Dirt can be described as a small bump deposited in, on, or 
under the painted surface, whereas crater looks like a circular low spot or bowl-
shaped cavity on the painted surface. It should be noted that dirt is more common 
than crater on the cabs. It is almost impossible to distinguish dirt from crater just by 
observing the captured images, therefore, human eyes and touch are still vital for this 
task.  
 

b) Image acquisition and annotation 
An image acquisition and annotation Graphical User Interface (GUI) was created and 
implemented in MatLab to facilitate the shooting and annotation parts. When a new 
object is detected in the system, sixteen images are automatically taken by the image 
acquisition and annotation GUI. After the shooting, the object’s surface is inspected 
manually with care and under good lighting conditions. Together with the defect 
annotation, the whole process is accomplished in less than fifteen seconds. 
 

c) Data collected 
The total number of cabs collected during the whole period (week 12 – 48, 2018, 
except the holiday period of weeks 29-32) is 20527. The dataset was divided in two 
parts, Data II and Data III. Note that Data I represents the data collected in the test 
system, which was used for analysis during the testing stage. The patches close to the 
edges of the images were excluded from the whole dataset to withdraw the edge’s 
effect. For Data II, each subset contains 18433 patches of eight different window 
sizes, which include 4234 patches of dirt, 372 patches of craters and 13827 defect-
free patches. 1170 patches close to the edges were removed from each subset. For 
Data III, each subset is formed by 16170 patches of eight different window sizes, 
including 3376 patches of dirt, 515 patches of craters and 12279 defect-free patches. 
836 patches close to the edges were removed from each subset.  
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C. Statistical learning for classification  
 
In WP1, we have developed a statistical learning approach for defect detection on 
painted cab surfaces, covering image acquisition, feature extraction and defect 
classification. The aim is to develop an approach that not only produces accurate and 
reliable classification but also provides uncertainty assessment for the classification 
results. To accomplish this we build feature descriptors using regression spline ideas 
applied to grey intensity pixel values of the acquired images. As the inspection of 
specular surfaces inflicts special challenges, PMD technique using reflected 
sinusoidal fringe is applied to capture images of the considered surfaces. 
Classification is then achieved using a probabilistic classification algorithm based on 
k-NN classifier.  

 
The scientific contributions of our work include the following novel elements necessary 
to succeed in defect detection and classification. 

 
1) We propose novel feature descriptors based solely on the smoothness degree of the 

fitted splines. These allow avoiding the usage of classification algorithms with 
computational expensive training phases that are most commonly used for surface 
defect detection. Instead we apply the probabilistic classifier based on k-NN 
algorithm that results in highly accurate and reliable classification. A number of 
feature descriptors and classifiers has been evaluated and compared, including HOG 
(histogram of oriented gradients) [22,23], LBP (local binary patterns) [24], 2D 
DWT (2D discrete wavelet transform) [25], smooth features based on P-splines [26], 
variabilities [27, 28], EDF (effective degrees of freedom) [4], RF (random forest) 
[10], CNN (convolutional neural network) [29], SVM (support vector machine) [9], 
probabilistic k-NN (k-nearest neighbors) [30].  
 

2) We provide a nonparametric patch-wise probabilistic classification approach built 
upon the one nearest neighbor rule with Euclidean distance. The estimates of the 
proper probabilities for each class are obtained using the concept of NN-balls in the 
feature space [30]. 

 
3) The probability based performance evaluation metrics are presented as alternatives 

to such conventional metrics as misclassification error rates, false positive and false 
negative rates. Moreover, the vectors of posterior probabilities of the considered 
classifier allow for classification quality assessment in terms of the uncertainty 
measure, Entropy [30]. 

 
The preliminary analysis of WP1 has been carried out to compare the performances of 
different classifiers such as CNN, RF, SVM and k-NN. Regardless of the feature vector 
chosen, SVM revealed itself to be the best classifier in terms of prediction accuracy 
whereas k-NN came out as the fastest one in those previous studies. These two 
classifiers, SVM and probabilistic k-NN, were then selected for the further investigation 
with more collected new data. 
 
The classification results show that the proposed approach is very promising. In 
comparison with all considered feature descriptors, the proposed EDF based feature 
vector performs the best in terms of both conventional and probability based 
performance metrics. The value of the frequency parameter of the sinusoidal pattern has 
only marginal influence on the detection performance of the EDF. In contrast, the 
performance of the alternative features decreases for higher values of the frequency, 
which is even more profound when using the probabilistic k-NN. Furthermore, the 
proposed features showed equally good classification results in terms of false positive 
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and false negative rates, whereas the competitive approaches appear less capable of 
detecting defect, erroneously yielding its absence. This indicates that the EDF features 
achieve not only higher classification performance but also can be viewed as an optimal 
approach to resolve the sensitivity-specificity trade-off task. Moreover, the introduced 
probability based evaluation metrics suggest that the approach is certain its decisions. 
 
To investigate the defect detection capability of the proposed approach for finding the 
most common types of defects such as crater and dirt, we examined a 3-class 
classification problem. Among the alternative features considered in the study, the 
feature vector based on HOG produced the best results when solving the binary 
classification task. So, the performance results of the HOG are shown here together with 
those of the EDF. The SVM classifier using HOG features failed to distinguish between 
three classes, at the same time SVM on the EDF performed as good as k-NN on EDF. 
So, the results on SVM performance are not included here.  
 
Our results shown that almost 100% of defect detection and 0% of false alarms are 
achieved when applying the proposed approach.  Equivalently, nearly all patches with 
both crater and dirt were correctly classified, and no defect-free patch was predicted as 
defective. Contrary to the EDF, the HOG descriptors are capable of defect detection to a 
much lower degree, accounting for more than 10% of false alarms and higher than 50% 
of non-detections. The performance results of the HOG are worsening for the datasets of 
patches that correspond to channels with larger values of the frequency parameter, 
whereas the EDF performs equally well for all presented datasets. 
 
The developed statistical learning approach is generic and can be applied to similar tasks 
and therefore it is of strongly relevance to the Swedish automobile industry in general. 
Besides the success, there are challenges left for further investigation:  

 
a) It was time-consuming and expensive to collect the data and many challenges 

emerged during this process. Hundreds of data were thrown away due to unavailable 
information caused by some reported bugs from the image acquisition and annotation 
GUI. According to the size of the mouse click error from the operators, some defects 
could be hidden. Sometimes when the click error was big, some patches (often with 
smaller window sizes) did not even include these defects. The click error tended to 
be bigger when dealing with smaller defects because it was easier to miss them. 
 

b) The defect’s hiding could as well be triggered by their micrometer size or by darker 
colors. Another vital and previously known issue was to separate craters from dirt 
during annotation. Touching the surface was still crucial to tell if it is a bump or a 
hole. Only a small part of the cab is currently investigated, the luggage lid. The 
luggage lid is flat while many other areas of painted vehicles might be curved, 
uneven, or contain pressings or gaps. With the luggage lid being one of the easier 
areas to investigate, the current results might not be applicable to the whole cab.  

 
c) The coming challenges include certainly scaling up the pilot system and developing a 

real time pilot system for defect detection and classification with an efficient and 
automated statistical process quality control system. The self-driven pilot system is 
currently running at Umeå Volvo GTO cab plant and the results look promising 
despite the limited time for each cab.  

 
d) Developing this system was complex, hence different areas of expertise are 

requested. Due to the short time available for prediction in real time, it was 
preferable to use the HOG features. The prediction time was reduced by utilization of  
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Figure 4: A map of the paint shop with the main sub-processes (SP1, SP2, SP3), quality control 
stations (QC1, QC2, QC3), repair stations (R1, R2, R3) and selected buffers (B1, B2, B3, B4, 
B5). Solid arrows indicate the normal movement of the cabs, and dashed arrows the possible 
routes for send backs. 

 
patches with larger window sizes. The task of estimating the size defects could not be 
accomplished in this report due to data complexity and restricted time in the project. 

 

6.2 WP2 – Alarm system and root cause analysis 
The general problem addresses a production line where a large number of sensors are 
collecting data in real time and where the objective is to use these data to monitor 
variation in quality. As a proof of concept Volvo Trucks paint process in Umeå was 
considered, see Figure 4. The work involved data collection, construction of cab-specific 
process variables, validation of variables, modelling the quality and developing an 
automated root cause analysis system. A summary of the results from WP2 is presented 
below, for further details see [5-8].  
 
A. Data collection  

The raw data consisted of four types of data: sensor data, tracking data, categorical 
data (e.g. color, cab type and cab specific repair data) and quality data. We included 
data from several sensors, including both frequently and sparsely measured variables. 
For example oven temperatures measured every third second and chemical 
concentrations measured once a day. Tracking data consisted of position and time 
measurements of each cab throughout the paint process. The quality data included 
manually observed defects. For example, craters, dust, orange peel and color 
disagreement observed at the different quality control stations, see Figure 4. Raw 
data were collected for the time period April 2017 to June 2018, i.e., 65 weeks 
excluding vacation. Data from 700 sensors, 100 categorical variables, 100 quality 
variables and more than 80,000 cabs were collected. Altogether close to 1 billion 
observations were collected. The data collection procedure is described in a technical 
report [5].  
 

B. Construction of cab-specific process variables  
The collected raw data are large and complex. These unstructured data need to be 
structured in order to enable modeling of different quality target variables. We have 
developed a novel approach that combines senor and tracking data to construct a set 
of cab-specific process variables (CPVs). A sensor can be physically related to a 
specific sub-process or to the entire paint process. For example, a sensor measuring 
oven temperature is physically linked to the oven and a senor measuring outside air-
temperature can be relevant for the entire paint process. For each senor and sub-
process two related tracking positions, t1 and t2, were identified, where t1 and t2 
represents the time when the cab entered and left the sub-processes respectively. Cab-  
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Figure 5: The cab-specific process variables (CPVs) were constructed in a three stage procedure: 
1) Variable specification where a sensor s and two corresponding tracing positions t1 and t2 were 
identified together with a set of relevant functions f.  2) Cab-specific raw data (d) were collected 
for each cab (indexed with i). 3) CPVs were constructed using the raw data and the specified 
functions. The CPVs can be time specific, sensor specific or depend on both time and sensor 
values. 
  

 
specific data on the tracking positions, as well as sensor data observed within the 
timespan t1-t2, were collected and used to construct several CPVs including for 
example time within the sub-process (a cab-specific time variable) and the median 
sensor-value while the cab was in the sub-process (a cab-specific sensor variable), 
see Figure 5. Interpolation was used to derive CPVs in the case the sensor was 
sparsely measured.  

 
A second type of CPVs were constructed from cab specific repair data, for example if 
sanding was applied or not at a repair station. The variable specification of the CPVs 
were made by personal with deep knowledge of the local paint process. Altogether 
more than 3,000 CPVs were constructed and observed on more than 80,000 cabs. 
Henceforth the CPV-data are called the explanatory data. 
 
The quality data are by its nature cab-specific and approximately 20 univariate 
response variables were constructed and considered. The quality variables included 
binary response variables (for example cabs with or without crater defects observed 
at a quality station), count variables (for example the number of observed dust 
defects) and continues variables (for example the quantified measurements of orange 
peel). Prior to the modelling the variables were pre-processed and filtered. Variables 
with a high degree of missing values were removed from further analyses and the 
remaining missing values were imputed, commonly by replacing the missing data 
with the variable´s mean value. Similarly, cabs with a high degree of missing values 
were removed. The data collection procedure is described in a technical report [5].  

 
C. Univariate investigation of the cab-specific process variables 

Henceforth the matrix with the collected explanatory variables are denoted X and the 
response variables are denoted Y. The aim is to model the relationships between each  
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Figure 6: The principal steps of the modeling. The relationship between the explanatory 
variables X and the response variable of interest (y) was modelled applying external variable 
selection (reducing the dimension of X), univariate analysis (specifying for example a linear or 
quadratic relationship between a specific CSV (x) and y) and a modeling and optimization step 
where the model’s hyper-parameters were tuned.     

 
 

of quality variables (y) and the matrix X, i.e. to fit a function g such that y can be 
predicted as y = g(X). The modelling include three principal steps: external variable 
selection, feature prediction via univariate analyses and model fitting combined with 
optimization, see Figure 6.  
 
As a first step of the modelling highly correlated CPVs were identified. In the case 
the correlated variables were derived from the same variable specification (see Figure 
5) one representative were selected and included in downstream analyses. For the 
relative rare case when the CPVs were derived from “independent specifications” one 
of the variables were included in the model fitting, but all variables influenced the 
prediction.   
 
In the second step we conducted univariate analyses in order to specify the 
relationships between the individual CPVs and the quality variables. Visualization 
tools were implemented and used to generate several diagnostic plots. The aim was to 
detect problems such as erroneous sensor data and outliers as well as long and short 
time trends, see Figure 7. In addition, these analyses were used for feature prediction. 
For example, suppose that the univariate analysis revels that the relationship between 
the explanatory variable x and the risk of dust defects is quadratic with the best 
quality observed at a value b, then it may be convenient to replace x with x´ = (x-b)^2 
prior to the modeling, see Figure 7.  
 
The univariate analyses resulted in several interesting findings including that sanding 
by machine at repair station 2 and spending long time within some buffers resulted in 
significantly higher risk of crater and dust defects at quality station 3. These results 
are discussed further in the following sections.   
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Figure 7: Visualizations for a CSV x and a quality variable y.    

 
 

D. Sanding by machine at repair station 2 increases the risk of craters at quality 
station 3  
At repair station 2 (R2) 25 % of the cabs were sanded in order to remove dust or 
crater defects identified at quality station 2. The defected cabs undertook different 
repair actions: sanding by machine (one or several times), sanding by hand, sanding 
by both machine and hand or no repair action. The investigation revealed that cabs 
that were sanded by machine at R2 had an increased risk (base risk % + 3.7 %) of 
having crater defects detected at quality station 3 (QC3) while the risk of dust defects 
at QC3 were unchanged. Sanding only by hand did not affect the risk of having crater 
or dust defects at QC3, see Figure 8. Clearly the analysis do not address how the risk 
of dust defects at QC3 would have been affected if sanding by machine at R2 would 
have been omitted. However, the results motivated an intervention study were 20 % 
of the cabs detected with dust at QC2 were not treated by sanding. Preliminary results 
suggests that omitting sanding do not increase the risk of dust defects at QC3. Hence, 
this suggest that the quality control at QC2 and the repair made at R2 can be omitted, 
leading to a substantial cost reduction and a decreased risk of crater defects. The 
sanding investigation is presented in a technical report [6].   
 

 
E. Spending long time within certain buffers increases the risk of dust defects at 

quality station 3 
A buffer in the production line is a place where several cabs can be stored for a 
longer time. In addition to the major buffers in Figure 4 there are several additional 
smaller buffers in the production line. If a cab is produced during uninterrupted 
production (i.e. production with no planned and no longer unplanned breaks) it will 
not spend long time in any buffer while a cab produced with an overnight/weekend 
interruption is likely to spend more than 5 hours in one of the buffers. 
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Figure 8: Summary of the sanding study. Sanding by machine at the repair station following the 
primer process step increases the risk of having crater defects after the top coat process.    

 
 

Eight buffers were considered and the cabs were divided in nine disjoint categories: 
spend less than five hours in all buffers, more than 5 hours in buffer 1, …, more than 
5 hours in buffer 8. For each category the risk of dust and crater defects at the 
following quality station (either QC2 or QC3) were observed. The base level risk of 
dust at QC2 was increased by 6 % units if the cab overnighted in buffer B2, see 
Figure 4. For cabs spending time in B4 the risk for dust and crater defects at QC3 
were increased with 7 and 4.3 % units respectively. The buffer investigation is 
presented in a technical report [7].   

 
F. Modell fitting, optimization and evaluation 

The aim is to build models that allow us to link changes in quality to abnormalities in 
the production. The major idea is that the risk of a certain type of defect (e.g. craters) 
is a function of how the cab was produced, which in turn can be described by the 
observed CPVs. The data for our modelling efforts have been the CPV-matrix X and 
a binary quality variable y, where the values are one if the cab is defect and zero 
otherwise. Modell fitting was performed in two principal ways. In the first approach 
y was modelled as a function of X with the objective to maximize the accuracy or 
some related measure. The drawback with this direct approach is that the modelling 
doesn’t take the structure of the underling risk into account. The second approach 
(the indirect approach) estimated the underlying risk (here the estimated risk is 
denoted z) based on the observed defects (y), for example by applying a sliding 
window as shown in Figure 9, and then model z as a function of X with the objective 
to maximize some distance D. In the simplest case D was the mean square error 
(MSE) for z and the predicted value of z, i.e. 
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Figure 9: Simulated data where the red line shows the underling risk of defect with an increased 
risk for cabs 700:900 and 4000:5000. The observed data were either 0 (no defect) or 1 (defect) 
and the black line shows the smooth defect risk for a window size = 99. The alarm levels were 
obtained via Monto Carlo Simulations and shows the 95th (alarm level 1) 99th (alarm level 2) 
percentiles of the smooth risk when the underling risk for defects was 0.5. The blue line shows 
the alarms, where an alarm was triggered if the smooth risk acceded alarm level 1 for more than 
30 cabs in a row.          

 
 
A drawback is that this distance is sensitive to outliers in the X-data. An alternative is 
to replace the predicted z vector with a smooth z-vector, e.g. by applying a sliding 
window to the predicted z-vector or to a predicted binary y-variable constructed from 
the predicted z-variable.  
 
For the first approach, where the response variable is binary, we identified a number 
of suitable machine learning algorithms including: penalized logistic regression [9], 
penalized linear discriminant analysis [9], random forest [10], support vector 
machines [11], Adaboost [12], Rusboost [13], artificial neural network [14] and deep 
artificial neural network [15]. In a first attempt we applied penalized logistic 
regression and used accuracy to evaluate the performance, see Master thesis [19]. As 
expected the accuracy was low, but despite this the work shoved that the CSVs can 
be used to model quality and that the models can be used for root cause analysis.    
 
In the indirect approach the response variable is a continuous random variable for 
which a number of machine learning algorithms are available, including:  regression 
analysis [16], LASSO regression [17], Beta regression [18], support vector regression 
[9] and random forest regression [9]. This work is ongoing and is carried out by 
industrial PhD-student funded mutually by Umeå University and AB Volvo. 
Preliminary results suggest that this is a promising approach that are better than the 
direct approach to capture quality trends in the, see Figure 10.  
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Figure 10: Smooth risk (red line) and predicted defect risk (blue) for 1000 cabs observed 2018.  

 
 
Independent of approach, the data were split into a training data set (80 % of the 
observations) and a test data set in order to enable unbiased estimation of the models’ 
performances. Cross validation was applied to tune the models’ hyper parameters and 
to avoid overfitting.  

 
G. Root cause analysis 

The derived models link quality outcomes to the production process and can be the 
basis for process adjustments. This can be achieved either by using the predicted 
quality to decide when to adjust the process, i.e. an alarm system, or by using the 
contributions of the variables utilized by the model to infer what adjustments are 
appropriate, i.e. a root cause analysis.   

 
We have implemented prototypes for both these approaches. The components of our 
alarm and root cause analysis system (AR-system) include: data on CSVs and quality 
outcome, predictive models, alarm functions, visualization tools and quantification of 
risk factors.   
 
Our pilot system is built on historical data, but in order to implement the system data 
need to be accessed in real time, for example by using database queries or push 
protocols. An important feature is to determine when to alarm, which can be derived 
using either the observed quality data or the predicted quality. In the former case the 
alarm function can be determined via Monte Carlo simulations assuming a base line 
defect probability, see Figure 9. For linear models (e.g. penalized regression and 
LDA models) with standardized explanatory variables (x) the coefficients describe 
(β) describe the relative importance of the CSVs and the products βx, where x is 
observed just prior the alarm, describe to what degree the CSVs contributed to the 
alarm. For non-linear models an alternative is to use model-independent feature 
importance metrics such as mean decrease in impurity or Shapley Additive 
Explanations, see Master thesis [20]. The pilot AR-system shows the predicted 
quality, highlights CSVs and sub processes that contribute to the alarm, see Figure 
11. A description of the AR-system is presented in a technical report [8]. 
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Figure 11: Selected output from the alarm and root cause analysis system. Predicted smooth risk 
of defect with one indicated alarm (red box). CSVs explaining the increased risk at the alarm by 
using the products βx. Sub processes contributing to the increased risk, where orange (some 
contribution) and red (high contribution) indicates that the process is likely to have contributed to 
the alarm.   

 

6.3 Pilot systems in a production environment 
A pilot system has been built within the Volvo’s production facility in Umeå. The 
system contains two modules: one for automatic defect detection and classification, and 
one module for alarm and root cause analysis. The system is located within the paint 
shop and placed physically in the process after the top coat oven. The target for the 
system is the upper part of the luggage lid for the left side of the cab.  
 
The installed equipment includes the following hardware: 
− One 55” monitor. 
− Two Fujinon HF16SA1 cameras. 
− Fixture for 55” monitor and cameras. 
− Cables for power, camera, monitors. 
− Two monitors from Dell (for visualization). 
− One Table (for the visualization monitors). 
− One Dell computer, Intel Xeon 5122 CPU @ 3,6 GHz, 160Gb RAM. 
− Windows 10, set up as a standard Volvo production environment computer. 
− The software were built in MatLab R2018R and Python v3.7. 
 
A patent screening was made within the project. The conclusion was that there was a 
patent opportunity, especially within WP2. However, it was also concluded that the 
value for Volvo to continue a patent process was too low since infringements would be 
difficult to detect. Below follows a detailed description of the two modules. 

1. Automatic defect detection and classification 
This module consists of three parts: Camera system, prediction model and visualization. 
The system is trained on dust and crater defects and can detect and classify these defects 
by nearly 100 %. The system also states if the defect must be repaired or not.  
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Figure 12: Monochrome camera and Sinusoidal pattern display in a production environment 

 
 

A. Camera system 
The camera system is based on the principle PMD (Phase Measuring Deflectometry) 
and projects 16 images with a sinusoidal pattern in the paint on the cab. The 
projection comprises a surface of about 0.2 m2 on the cab's left boot lid. Two 
cameras captures the 16 reflections. The camera management system was built in 
MatLab. The system communicates with the production control system and is thus 
integrated with the process equipment. The communication is made with a standard 
ODBC client. Once the cab arrives at the station, the system fetches the cab id from 
the production environment and triggers 16 sinusoidal patterns on the 55” monitor. 
 

B. Image handling and prediction 
A unique pattern is called a channel. The images from the two cameras are put 
together into one big image for each channel. The images are then stored locally on 
the computer in a bmp-format. The software creates smaller image patches based on 
the 16 images. Two prediction models can be used as a base in the system: Support 
Vector Machines (SVM) + HOG feature vector or Convolutional Neural Networks 
(CNN). 
 
For SVM the patch pixel size is chosen as 50x50 pixels and for CNN, the chosen 
pixel size is 128x128 pixels. Based on the pixel information, the system predicts and 
classifies defects per patch.  
 
The classification result is stored in a text file, containing the following information: 
Cab id, phase/frequency info, patch position number, probability, type of defect, 
repair info. 
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Figure 13: Visualization of defects 

 
 

C. The visualization module 
MatLab functions have been built to visualize the result of the prediction, see Figure 
13. The figure shows the cab’s surface with the identified defects. It displays 
different cab images depending on cab model. The system also states which defects 
to be repaired. The system delivers the prediction result, presented on the 
visualization screen, in about 3 seconds for the specified surface. 

 
Based on the results we conclude that it will be possible to scale up build a fully 
automated system that scans the complete cab. An estimation gives that 3-4 robots 
containing one screen each and two cameras, should be sufficient to cover a cab. In order 
to scale the system it must be trained and optimized also for curved surfaces and edges. 
The system must also be able to handle more defect types. There is room for 
improvement by tuning the shutter speed for the camera, using an optimum number of 
images, optimizing the patch creation technique. Furthermore, the pilot system uses 
standard hardware which would help to minimize the implementation cost for a complete 
system. 
 
The conclusion is that an implementation in practice will be carried out in two steps: 
 
i) Assisting system to operators 

An assisting system, covering the complete body and most defects, will show the 
operator the defects are and how they should be repaired, using a screen or a Virtual 
Reality device. The system will decrease operational cost as the judgement of defects 
are standardized, and repair cost and adjustments are minimized. 

 
ii) Fully automated system 

This system is completely automated, without any human interaction. 
In despite if the system is fully automated or set up as an assisting system, the 
classified defect data produced by the system is a requirement in order to produce a 
complete and accurate alarm- and root cause analysis system. 
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Figure 14: Alarm and root cause analysis visualization. Top part: the predicted risk defects over 
time. The bottom left: how the sub-processes contributes to the risk. The bottom right: the 
process variables that contributes most to the risk.  
 

2. Alarm systems and root cause analysis 
This module operates on the same computer as the one stated in module 1 and consists of 
three parts: Data retrieval, prediction calculation and visualization. This pilot system is 
more of a conceptual system. 
 
Within the paint shop numerous sensors are installed to measure different kinds of 
conditions in different areas, for example air pressure, air humidity, air flows and 
temperatures. These sensors are connected to a surveillance control system. An OPC 
communication protocol was set up and data from 139 different sensors are continuously 
stored in a database. These values consist of an array with sensor id and the measured 
value. The system communicates with the production data base with a standard ODBC 
communication interface made in MatLab. It’s continuously monitoring the database and 
fetches new sensor values online. The sensor id is also linked to a production process 
position. The system is thus integrated to the paint shop production equipment. 
 
A prediction file, trained on historical data, gives coefficients in order to calculate the 
posterior risk for cab defects online. The risk is predicted in real time and the system 
provides the operator with information on how the sub-processes contributes to this risk, 
see Figure 14.  
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7 Dissemination and publication 
 

The project has been widely communicated within different fora’s within Sweden. Besides 
the automotive industry, actors like RISE, Umeå municipality, Region Västerbotten and 
companies working within the field of forestry, agriculture and unions are informed. 
 
The project is also communicated globally at different international scientific conferences 
and globally within the Volvo group and Volvo Cars global organizations. 

 

7.1 Dissemination of knowledge and results 
 

How should the project result 
be used and disseminated? 

Mark 
with x 

Comment 

Increase knowledge in the field x FIQA will be used in Volvo Group 
University's training in AI Awareness. 

Passed on to other advanced 
technological development 
projects 

x A PhD student will continue working 
within the WP2 area. The student is co-
funded by Umeå University and AB 
Volvo. 

Will be passed on to product 
development projects 

  

Introduced in the market   
Used in investigations / 
regulations / permit cases / 
political decisions 

  

 
The following is a list of the main fora’s where FIQA has been presented: 
 
1) J. Yu. Research in Mathematical Statistics at UmU. Presentations as a part of UmU 

delegation for Valencia University (Valencia), Polytechnic University of Catalonia 
(Barcelona) Universitat Jaume I (Castellón), 17-23 February 2017. 

2) P. Rydén and J. Yu. FIQA. Inauguration of MIT Place, 2 May 2017, Umeå, Sweden 
3) E. Lindahl. FIQA. Presentation for the Robust Polishing Vinnova project, 

November 2017, Umeå, Sweden. 
4) E. Lindahl, J. Yu., and P. Rydén, S. ur Réhman, M.S.L. Khan. Invigning av Volvo 

GTO Pilot Plant. Presentation för regionala aktörer i Västerbotten, Dec 2017, 
Umeå, Sweden 

5) S. ur Réhman, Final Inspection and Quality Analysis. AI4X – Collecting Ideas and 
Identifying Challenges for Future AI Research in Sweden, February 12, 2018, 
Stockholm, Sweden. 

6) P. Rydén. FIQA - Automatiserad kvalitetsstyrning med hjälp av storskaliga 
produktionsdata och avancerad statistisk modellering. Presentation for Northvolt 
delegation at Umeå University, 3 April, 2018, Umeå Sweden. 

7) J. Yu. FIQA. SASUF2018, 14-18 May 2018, Pretoria, South Africa.  
8) K. Sundberg, J. Yu., and P. Rydén. FIQA. Klusterkonferensen 2018, 23-24 May 

2018, Katrineholm, Sweden. 
9) M. Silver. FIQA, Volvo Cars Manufacturing Engineering: Advanced Engineering 

Technical Meeting, June 2018 and Jan 2019, Gothenburg, Sweden 
10) E. Lindahl, FIQA, Volvo GTO global technical management, Oct 2018, Umeå, 

Sweden. 
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and Brazil Manufacturing, Maj 2019, Marstrand, Sweden. 

22) E. Lindahl, J. Yu., and P. Rydén. FIQA. Klusterkonferensen 2019, 22-23 May 2019, 
Katrineholm, Sweden. 

 
Besides above presentations, the FIQA project is used as a part of the Volvo Group 
University training for AI awareness and also presented at numerous occasions within 
Volvo GTO sites in France, Russia, United States and Sweden. 

7.2 Publications 
 

Within the project, eight (9) technical reports have been produced during the work, 
where of 3 scientific reports within WP1 and 4 scientific reports within WP2. The last 
report is a technical documentation report for the pilot system built in the Volvo GTO 
facility in Umeå. 

 
23) M.S.L. Khan and S. ur Réhman. (2018). Computer vision approach towards final 

inspection quality analysis. FIQA Research Report 1. 
24) N. Pya Arnqvist, B. Ngendangenzwa, L. Nilsson, E. Lindahl, and J. Yu. (2018).  

Defect detection and classification: Statistical learning approach – Part I. FIQA 
Research Report 2 

25) N. Pya Arnqvist, B. Ngendangenzwa, L. Nilsson, E. Lindahl, and J. Yu. (2019). 
Defect detection and classification: Statistical learning approach – Part II. FIQA 
Research Report 3. 

26) N. Pya Arnqvist, B. Ngendangenzwa, L. Nilsson, E. Lindahl, and J. Yu. (2019). 
Efficient surface finish defect detection using reduced rank spline smoothers and 
probabilistic classifiers. Under review for publication in Econometrics and 
Statistics. 
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27) N. Fries, X. Liu, S. Bertilsson, U. Andersson, K. Sundberg, E. Lindahl, and P. 
Rydén. (2019). Compiling a dataset for statistical learning in a manufacturing 
environment. FIQA Research Report 4. 

28) X. Liu, N. Fries, E. Lindahl, and P. Rydén. (2019). Study on how sanding of the 
primer affects the risk of crater defects in the topcoat. FIQA Research Report 5. 

29) N. Fries, X. Liu, E. Lindahl, and P. Rydén. (2019). The effect of buffer times on 
the paint job quality. FIQA Research Report 6. 

30) N. Fries, J. Harbs, A.K. Dey, E. Lindahl, and P. Rydén. (2019). A framework for 
deploying an automated alarm and root cause analysis system. FIQA Research 
Report 7. 

31) A.K. Dey, (2019), Pilot system documentation. 
 

Thirteen (13) students have worked in FIQA and completed eight (8) master thesis and 
one (1) bachelor thesis within Umeå University. These publications are listed below: 

 
32) O. Melander and P, Öhlund (2016). Modelling of surface quality defects related to 

production process data. Master thesis at the Department of Mathematics and 
Mathematical Statistics, Umeå University. 

33) Y, Mi. (2017) Specular Surface Inspection based on Phase Measuring 
Deflectometry. Master thesis at the Department of Applied Physics and Electronics, 
Umeå University. 

34) M, Augustian (2017). Neural Network based fault detection on painted surface. 
Master thesis at the Department of Applied Physics and Electronics, Umeå 
University. 

35) Ngendangenzwa (2017). Specular surface inspection based on phase measuring 
deflectometry. Master thesis at the Department of Mathematics and Mathematical 
Statistics, Umeå University. 

36) J. Svensson and J. Harbs. (2018). Automated alarm and root-cause analysis based 
on real time high-dimensional process data. Master thesis at the Department of 
Mathematics and Mathematical Statistics, Umeå University. 

37) J. Rönnlund and J. Sjölund. (2019). A Deep Learning Approach to Detection and 
Classification of Small Defects on Painted Surfaces. Master thesis at the Department 
of Mathematics and Mathematical Statistics, Umeå University. 

38) E. Conradsson and V. Johansson. (2019). A model-independent methodology for a 
root cause analysis system. Master thesis at the Department of Mathematics and 
Mathematical Statistics, Umeå University. 

39) W. Xiao. (2019). Data augmentation and using deep learning for specular surface 
defect estimation. Master thesis at the Department of Applied Physics and 
Electronics, Umeå University. 

40) V. Kröger. (2019). Orange peel, Primer correlation with top coat. Bachelor thesis at 
Department of Mathematics and Mathematical Statistics, Umeå University. 
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8. Conclusions and further research 
 
Continuous digitalization and automation of manufacturing processes are necessary in 
order for industries to stay competitive. The necessary steps involve: generating large 
amount of high quality manufacturing data, making data easily accessible (e.g. using 
efficient data bases), modelling data (e.g. using statistical learning and machine learning) 
and build systems that utilize the models to automatically adapt, improve and optimize 
the manufacturing processes (e.g. using artificial intelligence). The aim of the FIQA 
project was to digitalize and automate the quality control and root cause analysis 
processes at the paint processes at Volvo GTO factory in Umeå. This involved: 
 

• Developing a system for automated detection and classification of defects 
generating high quality defect data, which included developing a camera system 
(data generation) and predictive models (modeling). 
 

• Developing a system that connect manufacturing data with defect data 
(modeling) enabling an automated quality control and root cause analysis 
(improvement of the quality processes). 

 
• Set up a pilot system in production that incorporated the above systems in daily 

production.  
 
The FIQA project has delivered the desired pilot system, meeting most of the 
specifications, and has in addition generated general knowledge, specific improvements 
and a platform for future research and development as described below: 
 

• Generating data is easy getting access to quality data is hard and demand time 
and a lot of work. It is clear that Volvo needs to develop novel data solutions that 
are flexible (e.g. allowing new sensors) and can be used to access large and 
complex data in real time.  
 

• Raw data are not necessarily of high quality. Data are generally “dirty” and need 
to be pre-processed, which includes replacing outliers and identifying broken 
sensors. A lot of time need to spend on understanding, identifying, and 
constructing relevant variables. Furthermore, the quality outcome determined by 
the manual inspections at the quality stations have a low resolution with a high 
variation and are not optimal for modelling. 
 

• Statistical learning and machine learning can be used to predict defects and 
model the relationship between process variables and quality outcome. For 
example, the agreement between manually detected defects and defects predicted 
via statistical learning nearly 100%.   

 
• The collaboration between academia (Umeå University) and industry (Volvo 

GTO and Volvo cars) has for most times worked smoothly. Some major success 
factors are: commitment from all parties, support by managements (both at Volvo 
and the University) and a healthy budget together with a support from Vinnova 
FFI. 

 
• Working with data is rewarding. As discussed in WP2 the working process 

resulted in that we identified that sanding generates craters and that spending 
time in some buffers increases the risk of dust defects. The former finding has 
resulted in changed practice saving money as well as increasing quality. The 

http://www.vinnova.se/ffi


 
 

 

 
FFI Fordonsstrategisk Forskning och Innovation| www.vinnova.se/ffi  34 

novelty of these findings were only partially new, but the systematic work 
resulted in evidence that enabled actions.     

 
• Although the systems for automated detection and root cause analysis can be 

further developed, the result shows that the approaches works conceptually. 
Hence, raw data can be converted, through modeling, to information and 
effective tools. Importantly, there are no principal obstacles why these 
approaches wouldn’t be possible to apply on a large scale and implemented 
production. However there are some challenges: 
 
− The developed camera system needs to be replaced by a large scale 

commercial system. The FIQA project can be used to determine the 
specification of this system. 

 
− All data from the manufacturing process needs to be available and pre-

processed in real time. 
 
− Additional repair data, cleaning data and robot data are data sources that 

should be included in future. 
 

− The two approaches should be combined 
 
Our root cause analysis system has so far mainly used manually detected defect data and 
not the automated defect data generated by WP1. The two main reason for this are that 
we need automated data from more cabs to fit the root cause analysis models and that the 
automated system only generates defect data from a relatively small part of the cab.  
In a longer perspective there are some very interesting problems that can be addressed. 
The current system detects problems and identify sub-processes responsible for the 
decreased quality. We believe that it also would be possible to build a similar system that 
automatically tune parameters (e.g. various set points), suggest repair actions of 
machines so that the capacity is maximized.    
 
The purpose today with a manual inspection and notation is to facilitate so that car 
bodies or cabs can be adjusted. In FIQA, a comparative study has been made of the 
response data that is currently collected when cabs are manually inspected compared to a 
dataset that has been more carefully collected to train the classification algorithms. One 
conclusion is that an automatic detection system is required as a base, and that all defects 
are identified, not just the defects to be repaired to make a satisfactory prediction. To do 
a full-scale implementation of alarm systems and root cause systems, the following steps 
are needed: 
 

• System for detecting and classifying defects that covers the complete vehicle 
body (either as assisting of a full scale system). 
 

• System logic for managing large amounts of data (Big data) from different 
sources online. 

 
• Build a flexible system where it’s possibility to add more sensor data overtime 

that might affect quality. 
 
The trend in the market is that many actors work with machine learning and big data. 
During the FIQA project, the commercial solutions have also been further developed in 
part 1. Today we can see examples of suppliers who also applied machine learning 
techniques to detect and classify defects. At present, these systems are relatively unusual 
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in the automotive industry, but the interest is high from many manufacturers to 
implement solutions. These solutions seems also isolated to one unique process (as 
different processes has different surface properties). These systems only states where 
defects occur, has limited classification results, and does not give any information why 
the defects occurs. 
 
The experience from FIQA gives us understanding that working with big data is a 
complex task. We believe companies must change their mind sets in order to stay 
competitive then it comes to use big data. Big data affects all organizations, and 
collaboration in between these organizations is essential in order to succeed. This is 
challenging, but it also gives a lot of business opportunities when the academy meets the 
industry.  
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