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Kort om FFI 
FFI är ett samarbete mellan staten och fordonsindustrin om att gemensamt finansiera forsknings- och 
innovationsaktviteter med fokus på områdena Klimat & Miljö samt Trafiksäkerhet. Satsningen innebär 
verksamhet för ca 1 miljard kr per år varav de offentliga medlen utgör drygt 400 Mkr. 
 
För närvarande finns fem delprogram; Energi & Miljö, Trafiksäkerhet och automatiserade fordon, 
Elektronik, mjukvara och kommunikation, Hållbar produktion och Effektiva och uppkopplade 
transportsystem. Läs mer på www.vinnova.se/ffi. 
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1 Sammanfattning  
Framtidens autonoma fordon kommer att förlita sig på Deep machine learning algoritmer (DML), vars 
korrekta beteende inte kan garanteras genom traditionell mjukvaruteknik. Osäkerheten är ett stort hinder 
för att garantera kvaliteten på system som använder DML, särskilt i säkerhetskritiska applikationer. 
SMILE III antar denna utmaning genom att utveckla metoder som gör att DML-baserade funktioner kan 
inkluderas i säkerhetskritiska applikationer med kvalitetskrav från industriella standarder. Baserat på 
resultaten från SMILE I/II kommer SMILE III att vidareutveckla säkerhetsburskonceptet till en 
referenssystemarkitektur och prototyper, tillsammans med datahanteringsmetoder, som ska underlätta 
efterlevnad av de utvecklande säkerhetsstandarderna (inklusive den otillräckligt föreskrivna standarden 
SOTIF). 
Resultaten från SMILE III kommer att vara av intresse för fordonstillverkare som planerar att använda 
DML i säkerhetskritiska applikationer. Resultaten kommer också att ge värdefull input för standardens 
utveckling. Projektkonsortiet består av forskningspartners: RISE (huvudparter), QRTECH, Semcon, 
Combitech, ESI Nordic och Infotiv.  

2 Executive summary in English  
Future autonomous vehicles will rely on Deep machine learning algorithms (DML), whose correct 
behavior cannot be guaranteed by traditional software engineering approaches. This uncertainty is a big 
obstacle to ensure the quality of systems using DML, especially in automotive safety critical applications.  
The SMILE program has been proposed to address this challenge via developing method(s) that allow 
DML-based functions to be included into safety critical vehicular applications with quality control 
requirements from industrial standards. The SMILE program consists of several consecutive research 
projects: 

 SMILE I project studied state-of-art within Verification and Validation for DML systems and 
mapping of the challenges faced by the automotive industry [1]. SMILE I concluded that we 
should focus on a Safety Cage Concept within the follow-up project(s).  

 SMILE II project investigated the latest vehicle safety standards: (i) ISO 26262 [2] - functional 
safety, and lately complemented by (ii) PAS specification of ISO 21448 [3] - Safety of the 
Intended Function (SOTIF); implemented and tested a number of safety cage architectures in 
simulators [4], developed a framework for supervisor comparison [5]; and developed future 
research tool sets including generated datasets and an end-to-end vehicle controller. SMILE II 
observed that ISO 26262 alone cannot accommodate ML-based systems [6]–[8], the 
complement with the most recently published SOTIF (2019) will be more applicable. However, in 
its PAS edition, SOTIF only focused on what should be covered during systems engineering and 
leaves out how to achieve these goals in practice.  

With the success and promising results from SMILE I/II, the SMILE III project further develops the safety 
cage concept into a reference system architecture and prototype(s), together with data management 
approaches, facilitating compliance with the evolving safety standards (including the insufficient 
prescriptive ISO/PAS 21448 edition). 
The results from SMILE III will be of interest for automotive actors that plan to use DML to support 
autonomous functions in safety critical applications. These results will also provide valuable inputs for the 
development of related standards. The partners of project consortium are: RISE (lead partner), QRTECH, 
Semcon, Combitech, Infotiv, and ESI Nordics.  
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3 Background 
Autonomous and highly automated vehicles currently have a considerable momentum[9], where 
DML is a critical enabling technology. DML is typically used to extract a digital representation of 
the surroundings from high-dimensional sensor inputs. The DML-algorithms have proven 
themselves successful for perceiving objects within the complex traffic [10], [11]. Since traffic is 
highly dynamic the perception models need to be able to generalize well to handle all new 
situations. However, no machine learning model is sufficiently complete to avoid misbehavior 
under all circumstances on the road [12], thus also DML will sometimes fail to generalize. 
Unfortunately, the models trained using DML are particularly opaque in nature. They often consist 
of huge networks with a number of weight parameters in the order of magnitude of hundreds of 
millions [6] . Consequently, there are very limited options to analyze miss-classifications from a 
functional safety perspective, as neither traditional code reviews nor exhaustive safety analysis 
techniques are possible. 
Within this SMILE program, we first accepted that the DML-system will make miss-classifications. 
The predecessor projects SMILE I/II drives the program into the development of a run-time 
monitoring system for DML-based perception using the concept of adaptive safety cage 
architectures [7], or as referred to by [8]: safety supervisors. In the latest SMILE II project, we 
envisioned a safety cage, encapsulating the DML-based perception model [4], [5] capable of 
monitoring the input to the DML-based system and thus being able to predict potential anomalies 
in the model’s classification uncertainty. The work in [4] describes this as a classifier having a reject 
option when the uncertainty is too high, e.g., forcing a human to intervene. In line with the proposal 
by [7], we will distinguish between a safe region of operation and an invalid region that could lead 
to a hazardous situation. If the DML-based perception enters the invalid region, the safety cage 
will invoke an appropriate safe action, such as graceful degradation based on deterministic 
algorithms. The motivation for focusing on safety cages is that current alternatives to prevent 
system failures, e.g., fault prevention and fault avoidance, cannot address all malfunctions due to 
the complexity of the system and the non-deterministic traffic environment[5].  

4 Purpose, research questions and methods 
We therefore set our long-term goal of the SMILE program to accomplish functional safety by 
developing the safety cage as a functionally redundant system to the actual control system. For 
such a solution, the highly complex control function (i.e., applying DML) could be developed 
according to the quality management standard, whereas the comparably simple safety cage could 
be addressed by traditional verification and validation (V&V), or possibly even proven correct using 
formal verification methods [13], [14]. This vision is aligned with the structure of both existing 
standards: ISO 26262 (FUSA) and ISO/PAS 21448 (ability to control the system performances in 
detailed scenarios). 
In alignment to the program’s goal, SMILE III project further develops the concept to address the 
following research questions: 

 RQ1: To allow compliance with the future automotive safety standards, what does a 
strategy for development, operation, and evolution of safety-critical functions that use DML 
cover? How can the corresponding safety cases be developed? 

 RQ2: In the light of the proposed safety strategy, how can DML and supervisor 
components work together in a safety cage construct? How can it be adapted to fit the 
overall system architecture?  

 RQ3: To support evolution of the safety-critical functions, how can data management 
processes be applied to monitor (and improve) the system performance? 

SMILE III has connection to other ongoing research initiatives. During the project lifetime, its 
developing approach has also been adopted by VALU3S project[15] that creates a framework for 
verification and validation of multiple domains with a specific application in traffic infrastructure use 
case (UC1). 
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5 Goal 
The overall goal of the SMILE program is to develop enabling technologies that can be used in vehicles 
to reduce the number of injuries and fatalities in traffic. This will be achieved in close collaboration 
between research institutes, SME, OEM, and academia in long-term including project lifetime, i.e., the 
strong SMILE consortium will contribute to Sweden’s international competitiveness in machine learning 
for safety critical applications. This project will strengthen the machine learning competence within the 
Swedish automotive industry, in particular to support Verification and Validation (V&V) of DML-based 
solutions - a prerequisite to allow innovative solutions related to functional safety within the complex 
architecture of electrical systems of cars as pointed out in the Strategic Agenda of the Machine learning 
within FFI. 
Since the area of autonomous vehicles where machine learning is a key-technology is developing fast, it 
is important to have projects that mix the different aspects of machine learning and in particular, as is the 
case in this project, have a focus on applicability. Machine learning has the potential to change the 
industry, making vehicles more intelligent and personalized. However, to be able to exploit the full 
potential, knowledge about how these methods can be used in a safe and secure way within vehicles is 
required. This is therefore the focus of this project: To develop methods and tools that can be used to 
enable safe application in vehicles through verification and validation of machine learning-based systems. 
This is well in-line with the overall activities within the Electrical and Electronics Systems Engineering 
domain. To deepen the knowledge in both on- and off-board systems as well as V&V of automotive 
software. 
SMILE III proudly contributes to the development of three new Swedish researchers:  

- Jens Henriksson (Semcon) successfully completed his Licentiate in June 2020 and is getting his 
Ph.D. later this year 2022 (Chalmers University of Technology). His work within the project has 
been performed in close collaboration with Chalmers research (main supervisor Prof. Christian 
Berger) while ensuring industry relevance through his industry supervisor (Stig Ursing). 

- Mahshid Helali Moghadam is an industrial Ph.D. student at Mälardalen University. She had been 
employed by RISE as a researcher. She will get her Ph.D. degree shortly June 2022. 

- Kasper Socha will finish his Master degree 2022 (Lund University) with his development work 
within SMIRK. Kasper had recently been employed by RISE as a researcher. 

Infotiv, COMBITECH and QRTECH that are members of the project, have broad knowledge within V&V 
and embedded systems, will be capable of cross fertilizing their knowledge into the automotive industry.  
RISE, Infotiv and QRTECH are actively involved in an EU project VALU3S [15] and further develop the 
results from SMILE3 to extend into V&V for traffic infrastructure systems. 

6 Results and deliverables 

6.1 SMIRK MVP 
SMILE III focuses on addressing the safety assurance practices from a system point of view. It thus 
resulted in a need to have a common and representative use case where all the challenges are presented 
in its minimal forms.  
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SMIRK, an experimental pedestrian emergency braking ADAS, has thus been developed and published 
as a research prototype to facilitate research topics within this project. Together with all related published 
materials and datasets, we hope that the prototype will facilitate researchers in this area to conduct further 
research and findings. 

SMIRK responds to calls for a fully transparent ML-based Advanced Driver-Assistance System (ADAS) 
to act as a system-under-test in research on trusted AI [16]. SMIRK provides pedestrian emergency 
braking. By combining trained and coded software, SMIRK is intended to become a baseline Software-
Under-Test (SUT) for ML testing research targeting automotive perception applications such as object 
detection and path planning. To ensure industrial relevance, SMIRK will implement a reference 
architecture while adhering to development practices mandated by contemporary automotive safety 
standards [3] and is complemented by a fully transparent safety case. 
 
SMIRK is accessible at https://github.com/RI-SE/smirk. Readers interested in more details can consult 
our preprint paper [17]. Furthermore, AI Sweden has promised to host the SMIRK dataset (~185 GB) as 
part of the concurrent Vinnova project RoDL Road Data Lab. 

6.2 WP2-Architecture Design  

6.2.1 Reference architecture design 
We constructed a reference architecture design for the designed experimental setup within SMIRK. The 
reasoning behind the architecture lies in traditional object detection and classification that most commonly 
consist of a camera and radar setup that works in a sensor fusion setup to provide situational awareness 
of surrounding objects. In SMILE III, as the focus has been on verification and validation of machine 
learning (ML) based systems, it was deemed that a similar sensor setup would be used. To connect to 
the ML field, a large portion of research is on image neural networks, typically designed as convolutional 
neural networks (CNN’s). The SMIRK architecture uses a CNN as a pedestrian detector, see the gray 
boxes in Figure 2, that is providing estimates of where in scene pedestrians are located. Combining this 
with the information from the Radar gives a perception orchestrator that will inform the system if a collision 
course is detected.  
 
 
 

Figure 1: SMIRK logo 
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The dashed box in Figure 2 represents one safety measure that is operating on the output of the 
perception orchestrator. The reasoning being that potential faults in e.g. the pedestrian detector may 
contribute to failures, and applying a safety cage should be seen as a potential mitigation strategy. The 
potential risks of the system were analysed in a hazard assessment and risk analysis (HARA) early in 
the project, and was used as motivation for a set of specific risks that was investigated in SMIRK, namely 
the effect of missing or overpredicting pedestrians in a scene (so called breaking for ghosts).  
 
For the architectural design, a break manager was also considered and implemented in the Pro-Sivic 
simulator. In short, the system acts if a pedestrian has been identified in a collision path with the ego 
vehicle, and thus, a breaking signal is activated. 

6.2.2 Safety measures and argumentation 
During the project, the different safety requirements are motivated and verified through a set of 
experiments, where additional safety measures are put in place if the system does not fulfill the 
requirements by itself. For example, the pedestrian orchestrator (as well as most CNN’s) are trained with 
a majority of true positives (correctly detected pedestrians) and seldom with true negatives (correctly not 
classified pedestrians). This approach is preferred, as it maintains fidelity by only operating on samples 
that are within the training domain, and more specifically, within the training set. While empty scenes are 
included in the training, it is not enough to completely eliminate the occurrence of false positives (wrongly 
detecting a pedestrian).  
 
SMIRK attempts to mitigate false positive and false negative instances through anomaly detection 
methods, which are investigated in the safety case work package. SMIRK constructed and derived 
metrics based on the safety and robustness requirements put on the machine learning part of the system. 
We argue that, by passing these metric requirements, the system is deemed safe for this ODD, see 
specifically artifact [W] of SMIRK.  
 
Furthermore, the work package frequently discussed occlusion as an interesting topic. A separate 
experimental platform was constructed to study what effect occlusion would have on the pedestrian 
detection module. The same network architecture was used, specifically a YOLOv5s model, ergo a small 
scale convolutional neural network bottleneck combined with the traditional anchor point implementation 
introduced in YOLO [18].The result was, perhaps predictably, that the performance was reduced for 
occluded objects. However, the paper also presented a safety measure that investigated cascading 
networks as a safety measure, i.e. using sub-networks when the output was deemed too unreliable. The 
results were presented at SEAA 2021 [19]. 

6.3 WP3-Safety Case and Strategy 
The overall SMIRK safety strategy and safety case development builds on SOTIF and a methodology 
called Assurance of Machine Learning for use in Autonomous Systems (AMLAS) developed by the 
Assuring Autonomy International Programme at the University of York, UK. During SMILE III, we invited 

Figure 2: Reference safety architecture 
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the developers of AMLAS to give a private tutorial for the project participants. Our invitation was accepted, 
and in May 2021 the tutorial was given. 

6.3.1 SMIRK Safety Strategy 
The overall development framework for SMIRK is the SOTIF process (see Figure 3). The process starts 
in the upper left with A) Requirements specification. Based on the requirements, a B) Risk Analysis is 
done. For each identified risk, its potential Consequences are analyzed. If the risk of harm is reasonable, 
it is recorded as an acceptable risk. If not, the activity continues with an analysis of Causes, i.e., an 
identification and evaluation of triggering conditions. If the expected system response to triggering 
conditions is acceptable, the SOTIF process continues with V&V activities. If not, the remaining risk forces 
a C) Functional Modification with a corresponding requirements update. 
 

The lower part of Figure 3 shows the V&V activities in the SOTIF process. For each risk, the development 
organization conducts D) Verification to ensure that the system satisfies the requirements for the known 
hazardous scenarios. If the Conclusion of Verification Tests are satisfactory, the V&V activities continues 
with validation. It not, the remaining risk requires a C) Functional Modification. In the E) Validation, the 
development organization explores the presence of unknown hazardous scenarios - if any are identified, 
they turn into known hazardous scenarios. The Conclusion of Validation Tests estimates the likelihood of 
encountering unknown scenarios that lead to hazardous behavior. If the residual risk is sufficiently small, 
it is recorded as an acceptable risk. If not, the remaining risk again necessitates a C) Functional 
Modification. 
 
The SMIRK safety strategy is guided by AMLAS. AMLAS provides an overall process and a set of safety 
case patterns for safety assurance of ML components. Figure 4 shows an overview of the six stages of 
AMLAS. The upper part stresses that the development of an ML component and its corresponding safety 
case is done in the context of larger systems context. In our case, the larger context is the development 
of the SMIRK ADAS, indicated by the blue arrow. The AMLAS process starts in the System Safety 
Requirements, which in our case come from following the SOTIF process. However, both SOTIF and 
AMLAS are iterative process, which means that their activities are performed in parallel and there are 
many interdependencies - for AMLAS, the iteration is highlighted by the black arrow in the bottom of the 
figure. 
 

Figure 3: A simplified overview of the SOTIF process 
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Starting from the System Safety Requirements from the left, Stage 1 is ML Safety Assurance Scoping. 
This stage operates on a systems engineering level and defines the scope of the safety assurance 
process for the ML component as well as the scope of its corresponding safety case - the interplay with 
the non-ML safety engineering is fundamental. The next five stages of AMLAS all focus on assurance 
activities for different constituents of ML development and operations. Each of these stages conclude 
with an assurance argument that when combined, and complemented by evidence, compose the overall 
ML safety case. 
 

2. ML Safety Requirements Assurance. Requirements engineering is used to elicit, analyze, 
specify, and validate ML safety requirements in relation to the software architecture and the ODD. 

3. Data Management Assurance. Requirements engineering is first used to develop data 
requirements that match the ML safety requirements. Subsequently, data sets are generated 
(development data, internal test data, and verification data) accompanied by quality assurance 
activities.  

4. Model Learning Assurance. The ML model is trained using the development data. The fulfilment 
of the ML safety requirements is assessed using the internal test data. 

5. Model Verification Assurance. Different levels of testing or formal verification to assure that the 
ML model meets the ML safety requirements. Most importantly, the ML model shall be tested on 
verification data that has not influenced the training in any way. 

6. Model Deployment Assurance. Integrate the ML model in the overall system and verify that the 
system safety requirements are satisfied. Conduct integration testing in the specified ODD. 

 
The rightmost part of the figure shows the overall safety case for the system under development with the 
argumentation for the ML component as an essential part, i.e., the target of the AMLAS process. The 
AMLAS argumentation patterns for SMIRK are all presented using the graphical format Goal Structuring 
Notation (GSN) and can be found in the GitHub repository. 

6.3.2 SMIRK Safety Case 
Table 1 provides an overview of how the 34 artifacts resulting from following AMLAS present a complete 
safety cage for the ML component in SMIRK. From a bird’s eye view, the artifacts include six argument 
patterns ([F], [I], [R], [W], [BB], and [GG]) that are instantiated using the other artifacts. While all artifacts 
can be found on GitHub, this section presents a particularly interesting sample. 
 

Figure 4: Overview of the AMLAS framework 
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Table 1: SMIRK Safety Assurance Table. Numbers in the Input/Output 
columns refer to the six stages 
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This highest level SMIRK requirement is: 
 

 SYS-SAF-REQ1: SMIRK shall commence automatic emergency braking if and only if collision 
with a pedestrian on collision course is imminent. 

 
Based on a Hazard Analysis and Risk Assessment (HARA), two categories of hazards were identified. 
First, SMIRK might miss pedestrians and fail to commence emergency braking - we refer to this as a 
missed pedestrian. Second, SMIRK might commence emergency braking when it should not - we refer 
to this as an instance of ghost braking. 
 
SYS-SAF-REQ1 into two separate requirements corresponding to missed pedestrians and ghost braking, 
respectively. 
 

 SYS-ML-REQ1: The pedestrian recognition component shall identify pedestrians in all valid 
scenarios when the radar tracking component returns a time to collision (TTC) < 4s for the 
corresponding object. 

 SYS-ML-REQ2: The pedestrian recognition component shall reject false positive input that does 
not resemble the training data. 

 
These requirements are further detailed through performance requirements and robustness 
requirements.  
 
For objects detected by the radar tracking component with a TTC < 4s, the following requirements must 
be fulfilled: 

 SYS-PER-REQ1: The pedestrian recognition component shall identify pedestrians with a true 
positive rate of 93% when they are within 80 m. 

 SYS-PER-REQ2: The false negative rate of the pedestrian recognition component shall not 
exceed 7% within 50 m. 

 SYS-PER-REQ3: The false positive per image of the pedestrian recognition component shall not 
exceed 0.1% within 80 m. 

 SYS-PER-REQ4: In 97% of sequences of 5 consecutive frames from a 10 FPS video feed, no 
pedestrian within 80 m shall be missed in more than 20% of the frames. 

 SYS-PER-REQ5: For pedestrians within 80 m, the pedestrian recognition component shall 
determine the position of pedestrians within 50 cm of their actual position. 

 SYS-PER-REQ6: The pedestrian recognition component shall allow an inference speed of at 
least 10 FPS in the ESI Pro-SiVIC simulation. 

 
For pedestrians present within 80 m of ego car, captured in the field of view of the camera: 

 SYS-ROB-REQ1: The pedestrian recognition component shall perform as required in all 
situations ego car may encounter within the defined ODD. 

 SYS-ROB-REQ2: The pedestrian recognition component shall identify pedestrians irrespective 
of their upright pose with respect to the camera. 

 SYS-ROB-REQ3: The pedestrian recognition component shall identify pedestrians irrespective 
of their size with respect to the camera. 

 SYS-ROB-REQ4: The pedestrian recognition component shall identify pedestrians irrespective 
of their appearance with respect to the camera. 

 
Figure 5: SMIRK ML Safety Requirements Argument Pattern.Figure 5 shows the ML safety requirements 
argument pattern for SMIRK. The top claim is that system safety requirements that have been allocated 
to the ML component are satisfied by the model that is developed (G2.1). This is demonstrated through 
considering explicit ML safety requirements defined for the ML model [H]. The argument approach is a 
refinement strategy translating the allocated safety requirements into two concrete ML safety 
requirements (S2.1) provided as context (C2.1). Justification J2.1 explains how we allocated safety 
requirements to the ML component as part of the system safety process, including the HARA. 
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Strategy S2.1 is refined into two subclaims about the validity of the ML safety requirements corresponding 
to missed pedestrians and ghost braking, respectively. Furthermore, a third subclaim concerns the 
satisfaction of those requirements. G2.2 focuses on the ML safety requirement SYS-ML-REQ1, i.e., that 
the nominal functionality of the pedestrian recognition component shall be satisfactory. G2.2 is 
considered in the context of the ML data (C2.2) and the ML model (C2.3), which in turn are supported by 
the ML Data Argument Pattern [R] and the ML Learning Argument Pattern [W]. The argumentation 
strategy (S2.2) builds on two subclaims related to two types of safety requirements with respect to safety-
related outputs, i.e., performance requirements (G2.5 in context of C2.4) and robustness requirements 
(G2.6 in context of C2.5). The satisfaction of both G2.5 and G2.6 are addressed by the ML Verification 
Argument Pattern [BB]. G2.3 focuses on the ML safety requirement SYS-ML-REQ2, i.e., that the 
pedestrian recognition component shall reject input that does not resemble the training data to avoid 
ghost braking. G2.3 is again considered in the context of the ML data (C2.2) and the ML model (C2.3). 
For SMIRK, the solution is the safety cage architecture (Sn2.1) developed in SMILE II and further 
explored in WP4. 
 
Subclaim G2.4 states that the ML safety requirements are a valid development of the allocated system 
safety requirements. The justification (J2.2) is that the requirements have been validated in cross-
organizational workshops within the SMILE III project. We provide evidence through ML Safety 
Requirements Validation Results [J] originating in a Fagan inspection, a formal requirements inspection 
done as part of the SMILE III project in the end of 2021 (Sn2.2) – the inspection protocol is available on 
GitHub. 
 
The ML Requirements Assurance is at the core of the SMIRK safety case. Still, all six stages of AMLAS 
must be followed to generate the artifacts needed to constitute a complete safety case for the ML 
component in SMIRK. On GitHub, interested readers can find the output from the Data Management 
Assurance (including data requirements fulfilling the four assurance-related desiderata 1) Relevance, 2) 
Completeness, 3) Balance, and 4) Accuracy), ML Learning Assurance (including a model component 
description and its model development log), ML Verification Assurance (including an ML test strategy with 
data testing, model testing, and system testing) and ML Deployment Assurance (including a description 
of the operational environment and an erroneous behavior log based on the system testing results). Our 
preprint paper presents all results in detail. 

Figure 5: SMIRK ML Safety Requirements Argument Pattern. 
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6.4 WP4-Safety cage  

6.4.1 Safety cage Design and Optimization  
In SMILE II, QRTECH developed a safety cage concept based on the statistical analysis of neuronal 
activations in the neural network. This was an empirical method that was tested for different datasets. 
Based on the positive results we found, a full demonstrator was developed where the safety cage 
accepted or rejected the classification of a semantic segmentation network (Mask R-CNN). 
 
In SMILE III, the aim was to explore complementary approaches to safety cage, especially we were 
interested to verify the performance of more mathematically grounded approaches and compare it to the 
safety cage developed in SMILE II. In this regard, a particular topic of interest is the Bayesian approaches 
to quantify uncertainty in neural networks. In [20], the authors explain two types of uncertainties that are 
important for computer vision. Aleatoric uncertainty is used to capture inherent noise in the data while the 
epistemic uncertainty captures the uncertainty in the model, which can be reduced given enough data. 
For safety critical applications, it is important to calculate the epistemic uncertainty as this can be used 
to detect out of distribution objects. Thus for our use case to develop a safety cage, we focus on the 
epistemic uncertainty. 
 
As a full Bayesian neural network (BNN) is computationally expensive, approximations to BNNs have 
been proposed. In particular, Gal and Ghahramani, proposed using dropouts as an approximate method 
to get uncertainties from neural network [21]. In this case, dropouts are not only used while training as a 
regularization technique, but also used during inference. A single input is then sent multiple times through 
the network, which varies slightly for each pass due to the dropouts. The scores from several of these 
passes are then collected, the mean and standard deviation of which gives the actual score and the 
uncertainty in the prediction. The uncertainty calculated in this way, gives the epistemic uncertainty also 
known as model uncertainty. 
 
An initial test based on the above method was performed by training a simple neural network on MNIST 
and using omniglot as the outlier data. Using the dropouts during prediction, we could see that the 
uncertainties for the outlier data was higher than for the inlier data. A comparison between this result and 
SMILE II safety cage showed that dropouts were better at catching outliers. However, the questions of 
scalability and real time performance remained, especially because the predictions have to be run enough 

number of times so that statistical variables like mean and standard deviations can be calculated. As a 
first step to check scalability of the above method, we added dropouts to Mask R-CNN and trained them 
on the highway dataset generated in SMILE II. The dataset contains around 3000 of each car, truck and 
motorcycles and was generated from the Pro-SiVIC simulator. The network however did not converge 

Figure 6 Sample images from training set generated from Pro-SiVIC 
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during training and did not detect any of the objects in the image. One of the reasons for this might be 
that, we need significantly more data for training the network with dropouts than the one without dropouts. 
 
At this point, a survey of existing implementations of neural networks that could detect uncertainty was 
performed and the promising methods were compiled. Based on the requirements for SMIRK, we decided 
to test the Bayesian version of the YOLOv3 network presented in [22], along with the source code in 
Github (https://github.com/flkraus/bayesian-yolov3).  While the code is shared publicly, the trained weights 
are not shared. The authors in this work have trained their network on the Eurocity persons dataset, 
which consists of around 47000 images in which 218000 pedestrians and 20000 riders are labeled. The 
Eurocity persons dataset is however only available for academic or nonprofit institutions. 
 

 
 
In our work, we used the above implementation of the Bayesian Yolov3 code with the initial weights set 
to the original Yolov3 weights. We used around 10000 images from the WIDER pedestrian detection 
dataset (https://wider-challenge.org/2019.html ) for pretraining the network. The images in the WIDER 
dataset are from both surveillance cameras and cameras located on driving vehicles. The actual training 
of the network was done using the output images from Pro-SiVIC. The Pro-SiVIC scenarios were 
developed by RISE along with some random changes from QRTECH, giving a total of around 7000 
images. A sample set of images is shown in Figure 6. We tested the trained network on Pro-SiVIC images 
containing single and multiple pedestrians on the street. While the network was able to identify the 
pedestrians, the uncertainties we got from the network were not easily explainable. The results from the 
test set are shown in Figure 7. We also tested uncertainties with regards to the class for an outlier set 
that was synthetically created. These results are shown in Figure 8. As mentioned above and can be 
seen in the figures, the results were not satisfactory. There could be few reasons for the same. As 
mentioned in the previous paragraph, the authors had trained the network on significantly greater number 
of images than us. Also, the pedestrians and images generated from Pro-SiVIC are very similar even if 
they are from different scenarios. This might have led to insufficient learning for the network to predict 
proper uncertainties. To further test this hypothesis, we trained the network on the highway dataset used 
in SMILE II. However, the predictions were not satisfactory, and we need more work and data to test the 
Bayesian methods on the highway dataset.  
 

Figure 8: Class MI for outlier data. The yellow regions show 
where the network is uncertain on average.  

Figure 7: Epistemic uncertainty from 
Bayesian Yolo network. The yellower 
regions of the image corresponds to higher
uncertainty regions as per the network. 
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From the above results, we conclude that more work is needed in building and testing Bayesian methods 
for semantic segmentation. If the network needs more data than a non-Bayesian network, this leads to 
further demands on data collection and management. An easier approach till we get better methods for 
this kind of problems, might be to use empirical methods like the one used in SMILE II. However, we 
believe these Bayesian methods can already applied for other type of problems that for example, time 
series analysis.  
 
Apart from the analysis of above methods, we also developed some Heuristic rules that can work on top 
of the algorithm to get a better safety cage. As SMIRK was designed to include both radar and camera, 
the information from the radar could be used as an additional check point with regards to the trustability 
of the machine learning output. As SMIRK is an MVP, the rules are simple and few in number. But this 
provides a starting point towards combining ML output with heuristic rules. In the Table 2, we show the 
first version of the rules for SMIRK. 
 
Table 2: A first version of the heuristic rules for SMIRK 

Criteria Rule Comments 
Size (number of pixels) An object less than P x P pixels cannot 

be trusted for a decision. (The rule can be 
translated to specifying 2D angle to avoid 
dependence on camera resolution) 

  

Aspect ratio An object other than the aspect ratio X±x 
:Y±y is not a pedestrian. 

Should encompass or 
need special criteria for 
occluded pedestrians, 
children, person in a 
wheelchair etc. 

Speed An object moving faster than x km/h is not 
a pedestrian 

The maximum value 
should encompass 
runners. The speed comes 
from radar. 

Position on image (on road) The pedestrian bounding box should lie 
in the "zone" depending on the position of 
the camera (depending on the distance). 
The "zone" contains the pixels in the 
image that cover roads and sidewalks. 

  

  

6.4.2 Safety cage software prototyping in SMIRK 
 
SMIRK detects Out-Of-Distribution (OOD) input images as part of its safety cage architecture. Without 
losing generality, we decided to implement an OOD detection relying on the OSS third-party library Alibi 
Detect (https://github.com/SeldonIO/alibi-detect) from Seldon. Alibi Detect is a Python library that 
provides several algorithms for outlier, adversarial, and drift detection for various types of data [23]. For 
SMIRK, we trained Alibi Detect’s autoencoder for outlier detection, with three convolutional and 
deconvolutional layers for the encoder and decoder respectively. 
 
Alibi Detect’s autoencoder for OOD detection has been trained on the training data subset of the 
development data. The encoder part is designed with three convolutional layers followed by a dense layer 
resulting in a bottleneck that compresses the input by 96.66%. The latent dimension is limited to 1,024 
variables to limit requirements on processing VRAM of the GPU. The reconstruction error from the 
autoencoder is measured as the mean squared error between the input and the reconstructed instance. 
The mean squared error is used for OOD detection by computing the reconstruction error and considering 
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an input image as an outlier if the error surpasses a threshold θ. The threshold used for OOD detection 
in SMIRK is 0.004, roughly corresponding to the threshold that rejects a number of samples that equals 
the amount of outliers in the validation set.  
 

During the iterative SMIRK development, it became evident that OOD detection using the autoencoder 
was inadequate at close range. Figure 9 shows reconstruction errors (on the y-axis) for all objects in the 
validation subset of the development data at A) all distances, B) > 10 m, C) > 20 m, and D) > 30 m. The 
visualization clearly shows that the autoencoder cannot convincingly distinguish the cylinders from the 
pedestrians at all distances (in subplot A), different objects appear above the threshold), but the OOD 
detection is more accurate when objects at close distance are excluded (subplot D) displays high 
accuracy). Based on validation of the four distances, comparing the consequences of the trade-off 
between safety cage availability and accuracy, the design decision for SMIRK’s autoencoder is to only 
perform OOD detection for objects that are at least 10 m away. We explain the less accurate behaviour 
at close range by limited training data, a vast majority of images contain pedestrians at a larger distance 
– which is reasonable since the SMIRK ODD is limited to rural country roads 
  
Furthermore, as the constrained SMIRK ODD ensures that only one single object appears in each 
scenario, the safety cage architecture applies the policy “once an anomaly, always an anomaly” – objects 
that get rejected once will remain anomalous no matter what subsequent frames might contain. 

6.4.3 Safety cage and GAN attacks 

6.4.3.1 Introduction 
This sub-study investigated whether a Generative Adversarial Network (GAN) could be utilized to create 
data that is similar to the real data but different enough to be of interest in a safety cage from a validation 
perspective. Normally a GAN is used to generate new data or to modify existing data, for example to 
augment existing datasets or by removing glasses from a person or adding fog. A relatively new use-

Figure 9: Reconstruction errors for different objects on the validation subset of the develop ment data at 
different distances from ego car (magenta=cylinder, yellow=female business casual, green=male 
business, orange=male casual). The dashed lines show the threshold for rejecting objects. In SMIRK, we 
use alternative B) in the safety cage. 
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case is to use a GAN to generate “negative” data, i.e. it can be used for generation of data with the 
purpose of fooling a different model. By applying an Adversarial Attack (AA) framework with a GAN it is 
possible to generate images with the intent to fool a given classification, which would result in images 
that are similar but different enough for this purpose. For example, images with different weather effects 
or times of day could be generated. 
 
The study used the Modified National Institute of Standards and Technology (MNIST) database [24] to 
generate data consisting of adversarial attack images to investigate if this could increase robustness. It 
was done using a GAN with a classifier trained towards adversarial attacks, following the Adversarial 
Transfer on Generative Adversarial Net (AT-GAN) framework. An adversarial attack is the act of 
purposefully feeding a Machine Learning model an input with the intent of making the model interpret the 
input wrong. For example, to manipulate a self-driving vehicles interpretation of a stop sign in order to 
make the vehicle ignore it. The AT-GAN framework aims to generate non-constrained adversarial 
examples from any input noise, with the purpose to broaden the diversity of the adversarial examples 
[25].  
 
First, the GAN consisting of the generator and discriminator was trained on the MNIST dataset of 
handwritten digits to learn a good distribution of real data. Second, the classes 0 - 7, and 9 were targeted 
for attacks, using a pre-trained classifier. This resulted in a generator model that generates images aimed 
to fool the target classifier, training the classifier to identify adversarial attack images. The generated 
images can then be used in the verification and validation of the ML system. By making sure that the 
safety cage implementation reacts in the intended way to these not-quite-familiar images in the 
verification step. 

6.4.3.2 Background 
By training a GAN on a dataset it is possible to generate new synthetic data with this neural network, 
resulting in an increase in available data. There are limitations however, since the GAN is trained on a 
distribution of data it will only be able to generate data in that same scope. The synthetic data can thus 
not be used to increase the distribution of data. 
 
A GAN works by defining two different networks against each other and having them compete to “fool” 
each other. The Generator network is tasked to generate data from a random noise vector and feed this 
generated data to the discriminator which will try to determine if the fed data is real or generated. 
Depending on the discriminators result either the generator or the discriminator “wins” and the weights of 
the losing net is updated.  
 
The GAN itself is a “Auxiliary Classifier-Wasserstein Generative Adversarial Network with Gradient 
Penalty”. The Auxiliary Classifier enables the discriminator part of the GAN to classify the fed data in 
terms of what it represents in addition to discriminating between real and generated. In order to increase 
the training stability and chance of convergence the WGAN-GP uses gradient penalty instead of weight 
clipping to enforce the Lipschitz constraint: |f(x1) - f(x2) | =< K|x1-x2|. This means that the model is 
penalized if the gradient norm moves away from its target norm value of 1 [26]. 

6.4.3.3 Methodology and experiments 
Several existing frameworks for GAN and AA were used in this study, along with the popular open-source 
dataset MNIST. In this section it is described what frameworks were used, why and how. 
 
System 
The environment in which this model was trained and tested is a docker container created with the 
TensorFlow GPU-Jupyter image running on a laptop with: 

 Intel core i7-10850 @ 2.7GHz
 32 GB RAM 
 Nvidia Quadro P620 GPU 

Software Setup 
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 GAN framework was developed by [27] and running on TensorFlow 1.15,
 Auxiliary Classifier and Separate AA framework for comparisons by [28], running on TensorFlow 

1.15 
 An external CNN for evaluation purposes, written with TensorFlow 2. 
 Jupyter notebook used to visualize the results and calculate performance, running on 

TensorFlow 2. 
 
The GAN by [27] consists of several different methods of attack, with the choice of different pre-trained 
classifiers and attack frameworks. The chosen classifier was the Madry-MNIST classifier as described in 
[28]. The Madry model is an open-source attack challenge which updates its available pre-trained models 
based on the best attack submitted to them. They supply both a natural and adversarially trained model 
as pre-trained for download.  
These are compiled and run in a Docker container running TensorFlow 1.15. The training of the GAN ran 
for 50 epochs. The trained GAN is then ready for attack, this is run for as many epochs as it takes to 
generate x number of adversarial examples for the given classification. The AC-WGAN-GP model does 
this by generating a batch of data of the chosen source class and then feeding them to the chosen 
classifier. The images that manage to fool the classifier are saved as an attack. In this investigation 800 
images were the target. This was done for all ten classifications of the MNIST dataset (integers 0-9), 
however the generation of attack examples on number 8 was terminated due to not converging. This 
resulted in almost 8000 images of adversarially generated images representing integers meant to fool 
the Madry classifier. A few of these images can be viewed in the results section below. 
 
The Madry framework contains the functionality to do adversarial attacks by applying a perturbation on 
existing data [28]. This functionality is used to create 5000 AA examples to use in training the external 
classifier and for testing. 
 
An external CNN classifier is used to evaluate the different images in an unbiased way. By training this 
classifier on both adversarial example images and regular data two differently trained models is available 
to evaluate on. The regular training is simply the MNIST dataset, while the adversarial training is done by 
switching 5000 of the training images with perturbation based adversarial images. 
This classifier has the following architecture: 

• Input: 28x28 
• Layer1: Fully-Connected (128) 
• Layer2: Fully-Connected (10) (out) 
• The loss is calculated using Sparse Categorical Cross-entropy and using the stochastic optimizer 

Adam [29]. 
 

Figure 10: GAN generated realistic images 
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6.4.3.4 Results 
Figure 10 illustrates the generated images from the GAN during training, left image is from the end of 
epoch 1, while the right image is after epoch 49. 
 
After the GAN has finished training, it can be used for either targeted- or untargeted attacks, difference 
being if you want to attack a source class to a specific classification or not. Running untargeted attack on 
all ten classifications (excluding eight) of the MNIST dataset produces data as shown in Figure 11. 

 
The figures are sorted from zero to nine, excluding the number eight each containing 48 examples. The 
small number in the top left corner of each generated image represents the adversarial label. So, for 
example the top left most image has the source integer zero with a target of six, meaning that the goal 
was to fool the classifier to misread the zero as a six. 
 
Table 3 highlights the performance of the external CNN model trained on different data. One training on 
the regular MNIST dataset, the other is MNIST with 10% of the images switched to adversarially 
generated images of MNIST digits. The performance is tested on verification data consisting of 1) 
Unaltered MNIST data, 2) Adversarially manipulated MNIST test data, 3) A mix of the two, 4) Generated 
Adversarial digits. 
 
Table 3: Performance of CNN model trained on different dataset 

 Accuracy 
Model training: Adversarially trained Regular 
Image sets   
1. Regular test images: 0.96970 0.97300 
2. AA test images: 0.97640 0.55160 
3. Mixed test images: 0.96620 0.75610 
4. Generated AA images: 0.87711 0.98687 

Both models perform similarly on the regular MNIST test data, however when there are perturbation-
based AA images mixed in the model trained on such data performs significantly better. 97.6% vs 55.2% 
and 96.6% vs 75.6% respectively. When feeding the images generated by the GAN, the regular model 
out-performs the AA trained one by 98.7% vs 87.7%. 

Figure 11: Untargeted attack on all classifications of MNIST dataset 
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6.4.3.5 Discussion 
The results shows that it is possible to protect a system from adversarial attacks if the system is trained 
on data modified in the same way as the adversarial attack. The verification system shows an 
improvement in accuracy for both GAN-generated adversarial attacks and perturbation based adversarial 
attacked images. The study also shows that it is possible to generate simple images of numbers with 
GAN network, that can be used in adversarial attacks. 
 
To protect the live system on the vehicle from adversarial attacks might not be of great importance, since 
the video feed comes directly from sensors on the vehicle. To generate training data for the system might 
however be of more interest. It is possible that it might be hard to acquire training data for all necessary 
situations, for example cyclists in rain. It will probably be interesting to generate those images, or possible 
modify existing training data. In further work, the technique in this study might be possible to expand to 
real world training data, which then can increase live world performance of autonomous vehicles. 
 
The use of a GAN to generate synthetic data for verification purposes is an interesting proposition, which 
we believe warrants further work in this study. By using a GAN to generate data within the distribution 
and then using an attack framework to get unrestricted examples would be a good addition in the 
verification and validation. In order to get to that stage there is still work to be done. 
 
In this study the MNIST dataset was used to evaluate the effectiveness of the theory, an adaptation of 
the Pro-SiVIC data and generation of images based on them would be of interest. With the GAN it would 
be possible to generate images representing a human but try to pass it off as a geometric figure or some 
other classification. In preparation for this a script has been written to extract the classification objects 
from the Pro-SiVIC data using the bounding boxes as reference. An example of this can be seen in the 
Figure 12.  
 

6.5 WP5- Data management and V&V strategy  

6.5.1 State of the Art in Data Management 

6.5.1.1 Background 
In the early stages of the SMILE III project a literature study was performed to gather knowledge on data 
management techniques as well as methods for performing Verification & Validation on Machine 
Learning-based systems. Multiple articles and literatures were explored, some providing input to the 

Figure 12: Synthetized pedestrian in Pro-SIVIC 
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project in terms of a Workshop on the topic and served as background for the Data management strategy 
and general input to the direction of the project.  
The most relevant articles are summarized in this section, divided into the categories  

 Verification & Validation 
 Operational Design Domain 
 SOTIF and ISO 26262 
 Test Coverage & Simulation 
 Metamorphic Testing, Fault Injection & Adversarial Attacks 
 Data Management 

 
As per defined by the Method of the project, knowledge acquisition for the literature study was supposed 
to be done not only through articles, but networking and conferences, something that was hindered by 
Covid-19.  

6.5.1.2 Verification & Validation 
In [30]. a review is done on what theoretically needs to be proved for AD, with emphasize on the difference 
to traditional software and states that a combination of methods required. [31] proposes such a method 
to tackle the possible guarantees of a Neural Network (adversarial examples, safety verification, output 
range analysis and robustness). [32] propose a framework (VeriVis) and provide “A formal framework for 
specifying ML safety properties” (including local, global safety) for verifying the safety properties of a 
network. Also, [33] describe how difficult V&V is for AI/ML-based systems (due to e.g., sensitivity to 
adversarial perturbations) by describing five challenges but also propose solutions to these in a formal 
methods manner. 

6.5.1.3 Operational Design Domain 
While A Framework for Automated Driving System Testable Cases and Scenarios presents a Taxonomy 
for the ODD, Towards an Operational Design Domain That Supports the Safety Argumentation of an 
Automated Driving System a framework is suggested to enable the mapping between Operational Design 
Domain (ODD) and Use-Cases (UC) and their Operation Conditions (OC).  

6.5.1.4 SOTIF and ISO 26262 
[34] (written before SOTIF was released) analyzes ISO 26262 and states that it is not enough for V&V 
on ML while proposing changes required to accommodate this. Also [30] is written before SOTIF but 
comments on acceptable residual risk. 
Bridges the gap, Driver assistance systems: analysis, tests and the safety case. ISO26262 and ISO PAS 
21448 presents a way to integrate the SOTIF lifecycle into the V-model of ISO 26262. In Analysis of 
Safety of The Intended Use (SOTIF), SOTIF is analyzed with goal of understanding how to maximize 
Area 1 (safe & known), and thus minimizing the unsafes (and more importantly the unknowns). Key Point 
23 provides an approach on how to estimate (quantify) the residual risk.   

6.5.1.5 Test Coverage & Simulation 
[35] tests safety and neuron coverage (NC), and tries to use it as an argument for how to determine the 
quality of the network. NC is not a reasonable metric for V&V of Neural Networks. However, it says 
something about the diversity of the data and how well the Network utilized (for instance, a network where 
only 33% of the Neurals are activated from the (test) data, might be “too deep”.) Similar conclusions are 
found in [36], where they state that “Neuron coverage is correlated with input-output diversity and can be 
used for systematic test generation.” Combining these with the method in [37] could be a way of testing 
more efficient. 
For more automated testing and simulations, the following articles and tools could offer a way into 
coverage and automation: [38] (describing a probabilistic programming language for well-distributed test 
over scenes), OpenSCENARIO/OpenDrive/OpenCRG (all three defines standardized file formatting for 
simulating real-world driving situations, is maintained and developed by ASAM) and the tool Virtes (An 
open platform for creating, configuring and animating virtual environments) and the project Adaptive. 
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6.5.1.6 Metamorphic Testing, Fault Injection & Adversarial Attacks 
In [39] a framework (DeepRoad) is used to test Metamorphic Relations (MR). They display how changed 
weather conditions and MR can be used to test the network. They also explore input-validation in a way 
similar to the safety cage. Similar assumptions (weather conditions/distortions) are made in [40], where 
they state that the object under test should act sufficiently close with changed weather and/or lens 
distortion.   
In [41] examples of MRs that should always hold (mostly concerning data, however) but more importantly 
state that the “effectiveness of MT depends on the quality of identified MR”, insinuating that both people 
with domain and technical knowledge are needed in order to write reasonable requirements (MR). On 
top of this they state that a “violation of a MR is the equivalent of a defect/bug in ordinary software code”. 
The same reasoning is found in [42](defects in code), but they also present four MR/MT for testing a 
CNN. “Fault injection” is used to test the thresholds of the function.  In [43] they state that “The point of 
doing […] fault injection is not to validate functionality, but rather to probe for weak spots that might be 
activated via unforeseen circumstances.” 
[44] discuss other possible performance issues (such as the impact of changed camera angle) but also 
methods to “protect” the ML-model against it. In [14] a tool is proposed (Deep Learning Verification) which 
they guarantee to find adversarial examples (if they exist). Propagates the network and analyze layer-by-
layer. On the same note, [45] proposes another tool with the aim to trick the network by generating 
adversarial examples (their method is based on a “two player game”). They claim a network is 
theoretically “safe from adversarial attacks” when no examples can be found, and state that their solution 
is not network specific. 

6.5.1.7 Data Management 
In [46], the authors present an API for testing the quality of one Database. The methods for analyzing the 
data should be of interest (the API itself is not). They also present methods to add new data to existing 
and making sure distributions etc. are the same. In [47] seven suggestions on how/what to test in the 
data (and three other aspects) is presented. A Test Score Table is suggested to put a comparable score 
on a Machine Learning system.   
[48] is a survey, which (like the above article) divides the Machine Learning system/lifecycle into four 
parts. Digging into the data section, the desiderata is explained with aspects such as relevant, complete, 
balance and accurate.  
In [30] a formal requirements are made on the Volume, Coverage of known (critical) scenarios and 
Minimization of unknown (critical) scenarios data.  In [43] it’s stated that requirements take the form of 
training data “that enumerates a set of input values and correct system outputs": The non-safety-related 
data (general driving data) and specification on what “purely safety requirements that completely and 
unambiguously define what ‘safe’ is”. And state that “[…] the validation data must be independent and 
diverse from the training data in every way except the desired features, or else overfitting will not be 
detected during validation.” 
[34] analyzes ISO26262 (written before SOTIF): “[…] the complete specification requirement must be 
relaxed. Partial specifications can be required, where possible. For example, if a pedestrian must be less 
than 9 feet tall, then this property can be used to filter out false positives. Such properties can be 
incorporated into the training process or checked on models after training”.  
In [49] one of their two contributions is Dataset Generator, on which it’s said: “Our picture generator can 
generate large data sets for which the diversity of the pictures can be controlled by the user. This 
overcomes a lack of training data, one of the limiting problems in training of CNNs. Also, a target 
synthesized dataset can be used as a benchmark for a specific domain of application.” 
 

6.5.2 Data management strategy 

6.5.2.1 Background 
The data management (DM) strategy explored within SMILE III aims at creating a structured approach of 
generating and handling data for V&V of ML based system to be used for a safety-critical applications. 
The DM strategy is derived from Research Question 3. The strategy has been built upon the findings of 



 
 

FFI Fordonsstrategisk Forskning och Innovation  |  www.vinnova.se/ffi  23 
 
 

the previous SMILE projects and a literature study on how to ensure robustness and safety in safety-
critical machine learning models. Error! Reference source not found. shows how data management 
and how the data flow is connected with other topics in the project. 

6.5.2.2 Prerequisites 
The data management strategy builds upon the assumption that appropriate activities have been done, 
such as Hazard Identification, Fault Tree Analysis and similar per Functional Safety standards (ISO 
26262) [2] and Safety Of the Intended Functionality (ISO/PAS 21448) [3]. The resulting requirements on 
the Function and System (SMIRK) formulated as need to consist of System Requirements, Operational 
Design Domain (ODD), Machine Learning (ML) component functionality and safety requirements. From 
these the requirements on data, ML data requirements, can be formulated and will guide collection and 
processing. 

6.5.2.3 Expansion of the DM strategy 
SMILE III DM strategy will describe how to use Pro-Sivic to generate data to test how well the NN can 
generalize and detect hazards using a safety cage. Using the output of the safety cage, that is placed 
around the artificial Neural Network (NN), corner cases can be detected. The corner cases will be saved 
in a data bank. The information given by the data bank can then be used to investigate if the ML data 
requirements are properly defined. Once the requirements fulfil the operational design domain (ODD), 
the corner cases in the data bank will be used to fine-tune the NN [28]. The process is repeated iteratively 
until the NN achieves a satisfactory magnitude of some specific metrics. 

6.5.2.4 Outline 
 
Each part of this section is built on the following format: introduction on the topic, practical implementation 
and relation and consequence to the safety of the safety-critical function of the SMILE III project. 

6.5.2.5 Machine Learning Data Requirements 
Introduction: The requirement on the data used for primary training, validating and testing the Machine 
Learning component is an important step to properly represent the problem formulation as features in the 
data. The representation is thus a translation and a description, from system requirements and ODD, to 
metrics desired in the data.  

Figure 13: Data Management Flow 
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Practical: The ML data requirements must be formulated in such a way that it contains information on 
what data is to be collected. The data must contain information that is relevant to the current ODD. The 
requirements on data must be specified in a manner that every requirement is measurable, as a metric. 
Thus, Representation, Quantity, Distribution and Quality of the data are few general metrics possible to 
use as a foundation.  
 

• Specification - When and where is the ego vehicle driving? Can simulated data be used as a 
representation of real-world data?  

• Quantity - Is the amount of data enough to (fully) represent the problem? 
• Quality - Is the data representing useful features and of the desired quality? 
• Distribution - Are classes represented according to desired distribution? 
• Representation - Is the data of the desired type (Camera Images, LiDAR, Radar)?  

 
Relation and consequence: The ML data requirements must depend on the safety requirements. By 
ensuring this, one can strengthen the safety argumentation. With measurable metrics in the requirements 
of data, structured argumentation, repetition of experiments, analysis of faults and properties of data can 
be performed. Further on, enforcing a structured way of answering these above-mentioned metrics, no 
vital data-related safety requirements are missed. As the safety requirements in SMILE III are influenced 
by ISO/PAS 21448 (SOTIF)[3], the ML data requirements will be an extension to this and can be argued 
to follow the SOTIF standard. The implementation of a justification report increases the possibility to 
repeat the work in the future. 
 

6.5.2.6 Data Acquisition 
 
How data is collected, analyzed, cleaned and preprocessed will be discussed here. The relation and 
consequence of safety for the safety-critical ML component will be discussed. Argumentation for following 
the suggested activities will be supplied. 
 

6.5.2.6.1 Data Collection 
 
Introduction: Collection of data for ADAS can be done using sensors attached to a car that drives in 
everyday traffic. It can also be collected from simulators, simulating and extending the initial dataset. In 
SMILE III data will be collected in Pro-Sivic, a simulation tool that is manufactured by ESI. The main 
benefit of using simulators is the possibility to have labelled data out of the box and better control over 
what kind of data is collected, and by extension generating examples that rarely occur in real-world data. 
Data will be collected into three datasets, training, validation and test data. These datasets will be used 
during different times in the development process.  
 
Practical: In SMILE III, primarily simulated data is used. The simulation will produce data according to the 
requirements, formulated in section 2. It is commonly known in the Machine Learning community that it 
is a big advantage to have a lot of data. This is where Quantity from the previous section can be used. 
The quantity of the data must be sufficient. Once data is produced, it should be split into the training and 
validation datasets. How one should divide data into the two different sets is not trivial, however, a 
common split is 70-85% training and 30-15%. What is of more importance is that the sub-datasets’ 
(training/validation/test) metrics should mimic the metrics describing the entire dataset according to the 
metrics described in 2. When dividing data into the different sets the internal structure must be 
maintained. Separately from the above-described datasets (used in the development of the components 
and subsystem), another dataset should be collected by a test team. This dataset should be collected on 
the formulated requirements, as training/test datasets, but kept separate to maintain its impartialness. 
Additionally, this dataset should contain a significant amount of cases that are known to be hard for the 
system, corner and edge cases, to classify correctly. During and after the collection of data the information 
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that is needed to reproduce the data must be stored in a data generation log. For example, it can be 
parameters on cameras that are simulated in Pro-Sivic or specifications of certain pedestrians that are 
generated in the simulation.  
 
Relation and Consequence: By dividing data into different parts of data sets as described above it is 
ensured that all the different data sets have the same internal relation of data types. This is important 
since the ML algorithm must be trained on data that is derived from the ML data requirements. Followed 
by this it is as important to have similar, not identical, train and test data sets. When producing the 
verification dataset separately it is an action to prevent bias in the verification data. Bias is preferably 
avoided at the verification staged of training a neural network. If a team of developers and testers can 
avoid bias they have a stronger claim for safety in the developed product. The safety argumentation for 
the Data Management strategy in SMILE III is supported by following the suggested way of data 
collection. The procedure is heavily supported by the work done by R. Hawkins et.al. [50]. The data 
generation log provides another level of argumentation for robustness, reproduction ability and safety. 
 

6.5.2.6.2 Data cleaning and preprocessing 
 
Introduction: The data collected according to specification represents an interpretation of the formal 
requirements, but might still contain data not suitable for the task at hand. Outliers, points statistically 
observed far from the rest of the data set, are to be excluded as these often indicate extreme observations 
or wrongful measurements and might skew the overall data set. As data sets are combined, multiple 
observations of the same case might occur, which by definition will skew the distribution. With a dataset 
cleaned from abnormalities such as outliers, duplicated and irrelevant data, different preprocessing 
techniques might be needed to ensure the quality of the data. The level of sophistication required for 
preprocessing depends on the type of issue at hand, and which part of the process it affects. 
Normalization, the practice of standardizing all points of the dataset to a common scale, is used as a 
technique to improve the function’s performance during the training phase. E.g., for machine learning the 
approximation of a function is based on patterns and the relative, rather than the absolute, value of an 
input signal. Augmentation of data is the process of expanding the dataset. Adding noise to existing data 
to increase robustness to noise, making the dataset a more general, or complete, representation of the 
problem. Practical: As duplications might occur when combining different sets, the same possibility exists 
of collecting irrelevant data: points collected as a consequence of where the relevant data points are 
collected. As for Outlier and Duplicated data, Irrelevant points effect statistical values (such as distribution 
and skew) and thus the data set’s representation of the problem. In order to ensure the safety of the 
target function, the dataset must be under control. Thus, observations unrelated to the function’s task 
(based on the requirements and ODD) should not exist. Further, duplicated data might impact the 
"learning process" of the function, as certain classes might be favoured, undesired, in the data, and must 
be excluded. From section 2, quality is referred to as a measure of data. When cleaning the data, it is 
done with the aim of increase the quality of the data. As different inputs might be of different units and 
scales, normalization of these might speed up learning. It is thus not a safety-critical measure. Normally, 
min-max scaling is applied, where the points are fit is done to fit the range [0, 1]). Structural issues might 
occur, where a signal with numerical (e.g. an integer) values is represented by some other type (e.g. as 
a string) and is needed to be converted to the desired representation. This might, in some cases, be in 
the interest of safety as control of the input is highly relevant for a learning algorithm. Closely related to 
structural issues is missing data, where e.g. the measurement of a continuous signal has stopped and 
NaN points are recorded instead, for a limited period. To make the data representative, again, several 
approaches may be taken: the samples can be discarded entirely, interpolated with the surrounding 
points, substituted with a predetermined value (often either 0 or the mean of the instance). Some caution 
is recommended, as this will affect the function. For instance, for a signal with binary measurements, the 
interpolation might be 0, 1 or 0.5, where the latter does not represent anything useful, making the dataset 
more unsafe and representative than before preprocessing.  
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The final remark for preprocessing of data and datasets is the handling of missing labels and verification 
of these. The label of the data is the foundation for classification, both internally and e.g. a learning 
algorithm: Data is typically defined by its label and is usually what is used to cluster different points. When 
it comes to missing labels, both manual and automatic assignment may be done: the more safety-critical 
the application to use the data is, the more manual labelling[51] is recommended and in these cases by 
persons with domain knowledge. On the other hand, automatic assignment of labels require either a 
sophisticated algorithm (with preconceptions and bias) or a trained Machine Learning model (where 
explainability is missing) and manual work is needed as well. Missing labels is not a trivial problem to 
handle, and we dissuade from using such data, to the extent possible. Verification of data labels is of 
high priority, and require to some extent personnel with domain knowledge to ensure the safety 
associated with feeding a training algorithm with wrongful labels. Augmentation can be done in different 
ways: adding noise to existing input data to increase robustness when the dataset is somewhat complete, 
generating semi-synthetic data based on existing to bridge the gaps or generating fully synthetic data 
from a simulation of the real world.  
 
Relation and consequences: Assuring the collected data has desired structure, type and being free from 
outliers, irrelevant and duplicated data is required to ensure the safety of further development. As 
discussed above, outliers might create wrongful connections in a Neural Network while missing labels (or 
wrongful) changes the learned target. Both create uncertainty for a problem that is already complex. The 
level of risk associated with augmentation activities are in increasing order: while adding noise to current 
data might be representing something slightly different than the collected, it could still be said to represent 
somewhat in the domain of the original data. Fully synthetic data (or entire datasets), however, have to 
be carefully analyzed to ensure its validity. In the example of a Perception Model, the original dataset 
may be images collected in the real-world, while a simulator generates synthetic data where the limits of 
photorealism are in the hand of the tool. Thus, an image generated in a simulator might appear to contain 
real-world features to the human eye, while the encoding inside the Perception Model tells another story. 
 

6.5.2.6.3 Analysis 
 
Introduction: Analysis is required to guide aspects of collection and augmentation, e.g. to ensure there is 
an appropriate class balance within the dataset [48]. This means that one needs to make adequate 
changes to the dataset that ensures it is complete, accurate, have class balance and is relevant.  
 
Practical: During analysis, the data set needs to be looked through. A good way would be to extract 
information about the dataset in a programming environment. There, it would be possible to order data 
types in certain ways in an efficient way. From section 2, it is given that the data must have the right 
representation for the task at hand. During analysis, the representation of data must be analysed. The 
analysis stage is thereby set and if done correctly it is possible to estimate the risk that the dataset brings 
with it. It is during the analysis of the dataset that it is possible to have real insight into what kind of data 
is included in the dataset. If it here shows that data does not live up to the ML data requirements, it must 
be resolved and documented.  
 
Relation and consequence: To get an overview of the dataset is very helpful when assuring safety in the 
system. The analysis procedure will give important insight into how and if the data is full filling the ML 
data requirements. As mentioned earlier, this makes it possible to estimate the risk of the data that it will 
inevitably bring to the system. 
 

6.5.2.7 Simulation and testing 
 
Introduction: The essence of SMILE is to add a safety cage in critical applications. An example of this 
can be: 
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Ego car has a braking system that is controlled by a machine learning algorithm is an example of a safety-
critical application. The ML algorithm is trained to recognize possible hazardous with data from sensors 
and cameras as input which is placed on ego car. The safety cage will either accept or decline the 
classification result from the ML component that handles the brakes. If it accepts it, the algorithm will 
have the control and do the necessary maneuvers to avoid accidents. If the safety cage declines the 
result from the ML component, it will let go of the control over the brakes and hand the responsibility to 
the driver. 
 
Safety cage (Practical): In SMILE III, one can assume that the safety cage must act as an indicator of 
how well images, in this case, are classified. The safety cage can mediate this with different metrics. 
Such as classification score, AUROC, or anomaly score. By analyzing this output from a classified data 
type, one can determine if the NN is generalizing ”good enough” or not. Good enough will be a design 
parameter, usually defined as a threshold and determined by the safety owner/tester. 
By implementing the safety cage, the outcome can be any of the three for a given simulated scenario: 
 

• Alternative 1: Rejected based on anomaly score. The data type is classified with a metric value 
that does not fulfil the requirements to be regarded as safe/certain. That data type will be rejected 
to the data bank instance. 

• Alternative 2: Accepted based on anomaly score. The data is classified with a metric value that 
fulfils the requirements to be regarded as safe/certain. This type of data will be accepted and not 
be sent to the data bank instance. 

• Alternative 3: Rejected based on miss-classification. The data is classified with a metric value 
that fulfils the requirements to be regarded as safe/certain, however, the simulation provides that 
the situation is a false positive/false negative (FP/FN). This means that the   model is certain of 
something that actually is false. This type of classification errors must be detected and the NN 
should be fine-tuned on this as well. The data type that generated such  behaviour must be sent 
to the data bank instance. 

 
Table 4: Data handling based on safety cage results 

Good metric score Bad metric score FP/FN 
Accept Reject to use in databank Reject to use in databank 

 
 
Relation and consequence: The safety cage is a central part of SMILE-III. Besides its original gaining, it 
also gives a clear description of what type of data is considered "unsafe". This type of data lands under 
the category Known and hazardous, also known as area 3 in SOTIF [52]. This additional knowledge on 
how the classifier performs must be used. If it is used properly, a safer system can be produced. The 
rejected data will be guided to a databank. This will be covered in the next section. 

6.5.2.8 Databank 
 
Introduction: The databank is to be viewed as another data set. But it will only contain data that was 
rejected by the safety cage. The aim of the data bank is to use the data to fine-tune the classifier with 
data that it was not performing well on. By doing this one ensures the reduction of cases that are 
represented in area 3 in SOTIF [52]. This section will contain suggestions on how one can optimize the 
usage of information in the databank. Data in the databank will consequentially go through the data 
acquisition phase. 
 
Practical: Data that is sent to the databank will need to be prepossessed, analysed and cleaned in the 
same way as the original data set was according to section 6.5.2.6.2 before it is used to fine-tune the 
classifier. To make the fine-tuning more efficient Generative Adversarial Network (GAN) is to be used to 
produce new data points that are very much alike the original data point. This will make it possible to 
produce a lot of data points from one rejected data point. It is also suggested that GAN can be used to 
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produce small pixel changes that can have a large impact on how the model performs. By fine-tuning the 
model with such data, it can have a positive effect in terms of robustness against adversarial attacks. The 
changes done to the rejected data must be documented in the same way as mentioned in section 
6.5.2.6.2. 
 
Relation and consequence: In an ideal case, the previously described steps will happen automatically, 
which means that the ML component gets more and more reliable continuously. In SMILE, this will not 
be possible since data will be stored offline. However, for a non-automatic system, the implementation of 
a databank will increase the chance to build a safe and robust ML component.  
Documentation of the underlying steps and results will make it possible to repeat the construction of the 
ML component. In ISO/PAS 21448 (SOTIF) it is specified that the ML pipeline should make it possible to 
transform known and hazardous scenarios in area 3 into area 2. Area 2 represents known and safe 
scenarios. The usage of rejected data in the databank supports SOTIF and will make the system more 
safe, robust, and repeatable. 
 

6.5.2.9 Discussions 
 
The DM strategy in SMILE III is presented and focused has been on strengthening the safety 
argumentation, robustness, and repeatability. To ensure this, it is suggested that the ML data 
requirements are documented properly. Data acquisition ensures a good dataset that the NN will be 
trained on if the ML data requirements have been defined and interpret correctly. Documentation of data 
acquisition is necessary and the act of doing so will make the system more repeatable. A description of 
how the safety cage can work in SMILE is presented to give context to the data management activities 
related to the safety cage. Rejected data from the safety cage will be sent to a databank, this will then be 
used to improve the system and the ML component. 
 

6.5.2.10 Relation and Consequence 
 
Data Requirements: The data requirements are modelled from and must depend on the safety 
requirements. Hence, the quality of the data requirements and the legitimacy of its safety argumentation 
is highly dependent on the incoming Safety Requirements and ODD. By ensuring this, one can strengthen 
the safety argumentation. 
Along with the requirements on data, requirement metrics, structured argumentation, gathering plan, 
analysis of faults and properties of data are to be formulated. Further on, enforcing a structured way of 
answering these above-mentioned metrics, no vital data-related safety requirements are missed. 
As the safety requirements in SMILE III are influenced by ISO/PAS 21448 (SOTIF), the data requirements 
will be an extension to this and can be argued to follow the SOTIF standard. The implementation of a 
justification report increases the possibility to repeat the work in the future. 
 
Data Acquisition: Gathering data according to a predetermined plan and from the formulated 
requirements with the measurable metrics guarantees the data follows the general safety requirements. 
Implied, training-, validation- and testing-datasets should all contain desired qualities individually and in 
whole. However, in order to prevent requirement bias in the data, the verification dataset should be 
produced/gathered separately from the rest. As the requirements and the gathering plan by default will 
be interpreted differently and thus contain the bias of the gathering team, ensuring verification data 
gathering being performed separate minimize the risk of bias. If the team of developers and the team of 
testers can avoid this bias they have a stronger claim for safety in the developed product. 
The safety argumentation for the Data Management strategy in SMILE III is supported by following the 
suggested way of data collection. The procedure is heavily supported by the work done by R.Hawkins 
et.al. [50]. The data generation log provides another level of argumentation for robustness, reproduction 
ability and safety. 
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Assuring the collected data has desired structure and type (defined by requirements) while being free 
from outliers, irrelevant and duplicated data ensure the safety of further development. As outliers might 
create wrongful connections in a Neural Network and missing labels (or wrongful ones) changes the 
learned target, both create uncertainty for a problem which is already complex. 
The level of risk associated with augmentation activities are in increasing order: while adding noise to 
current data might be representing something slightly different than the collected, it could still be said to 
represent somewhat in the domain of the original data. The amount of noise, deviation, should be 
specified in data requirements. Fully synthetic data (or entire datasets), however, must be carefully 
analyzed to ensure its validity. In the example of a Perception Model, the original dataset may be images 
collected in the real-world, while a simulator generates synthetic data where the limits of photorealism 
are in the hand of the tool. Thus, an image generated in a simulator might appear to contain real-world 
features to the human eye, while the encoding inside the Perception Model tells another story. 
For further argumentation and control of data, an overview is needed. Whether a report or visualization 
tool is used, assuring safety in the data comes from a clear overview. A structured analysis gives an 
important insight in how and if the data is full-filling data requirements. This also allows for the possibility 
to estimate the risk of using certain data and datasets and how the mixing of different datasets bring 
uncertainties to the system. 
 
Simulation and testing: The safety cage is a central part of SMILE-III. Besides the trivial benefits of it 
(providing a fail-safe), it may also give a clear description of what type of data is considered "unsafe". 
This type of data lands under the category Known and hazardous, also known as area 3 in SOTIF [52]. 
This allows for expanding datasets and/or limiting the ODD and further the safety requirements. This 
additional knowledge on how the classifier performs can be used to improve not only the data but also 
the process, as it should make clear areas and scenarios not fully represented in the data. The rejected 
data will be guided to a databank, where further analysis may be done. 
 
Databank: In an ideal case, placement of rejected data and automatic analysis of it is performed. 
Throughout the development process, this means the ML component continuously becomes more 
reliable. In SMILE III, this is not done practically as the data is stored offline. However, theoretically, the 
implementation of a databank will increase the chance to build a safe and robust ML component. 
Documentation of the under-laying steps and results, as well as a well-kept database and -bank, makes 
it possible to repeat the construction of the ML component. In ISO/PAS 21448 (SOTIF), the ML pipeline 
is specified to make it possible to transform known and hazardous scenarios in area 3 into area 2. The 
usage of rejected data as an improvement to an immature system supports SOTIF and will make the 
system more safe, robust and repeatable. 

6.6 WP6-Autonomous platform 
A Go-Kart platform (Autonomous platform) has been developed as another research platform besides 
the software simulation platform. It is ready for data collection, integration and testing of the algorithms, 
approaches proposed by SMILE. This platform will be used as part of the V&V process for the subsequent 
research projects of the SMILE series. The Go-Kart platform is illustrated in Figure 14. A video 
demonstrating the platform is also available at: https://youtu.be/m7VoXZ-J48U  
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The autonomous platform collects in realtime data captured from its sensors and publishes the 
information to different ROS topics. Data from the following sensors are available: 

- LiDAR (Figure 15) 
- Camera (Figure 16) 
- IMU (gyro, accelermometer, magnetometer) 
- Wheel speed sensor 
- Sonar sensor 
- Go-kart state output 
- Go-kart driving outputs/requests 

 

 

Figure 16: Go-kart camera sensor, mounted on a 3D-
printed stand 

Figure 15: Lidar sensor that is mounted on a flat stand 

Figure 14: Go-kart autonomous platform, from side and from behind 



 
 

FFI Fordonsstrategisk Forskning och Innovation  |  www.vinnova.se/ffi  31 
 
 

A ROS architecture is implemented on TX2, together with a simplified ROS python interface and SMILE 
node (Figure 17). Besides the realtime data communication, data can also be recorded to create the V&V 
datasets. 

 
Figure 18 shows the current available list of data topics implemented in the Go-Kart’s ROS component. 
 
 

Figure 17: Implemented ROS python interface 
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7 Dissemination and publications 
 

7.1 Dissemination 
 

How has / is the project result to be 
used and disseminated? 

Marked Comments 

Increase knowledge in a specific 
area 

X SMILE III improves the SMILE research 
environment with new researchers, improved 
current research competences of its partners 
and established a research infrastructure 
including open sources, process descriptions, 
and open datasets. 

Figure 18: Available ROS data topics in Go-Kart 
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Be passed on to other advanced 
technological development projects 

X SMIRK is a research prototype under 
development that facilitates research on V&V of 
safety-critical systems embedding ML 
components. SMIRK responds to calls for a fully 
transparent ML-based ADAS to act as a 
system-under-test in research on trusted AI. 
SMIRK and its safety case is available on 
GitHub under an open source license. 

Be passed on to product 
development projects 

  

Introduced to the market   
Used in investigations, regulations, 
permit matters/political decisions. 

  

 
 

7.2 Publications 
SMILE III resulted in a number of publications, talks, tutorials as listed in the following subsections. 

7.2.1 Scientific publications and conferences 
 J. Henriksson, “On Improving Validity of Deep Neural Networks in Safety Critical Applications,” 

Licentiate thesis, Chalmers University of Technology, 2020. Accessed: Apr. 26, 2022. 
[Online]. Available: https://research.chalmers.se/en/publication/517219  

 M. Borg, R. B. Abdessalem, S. Nejati, F.-X. Jegeden, and D. Shin, “Digital Twins Are Not 
Monozygotic – Cross-Replicating ADAS Testing in Two Industry-Grade Automotive 
Simulators,” in 2021 14th IEEE Conference on Software Testing, Verification and Validation 
(ICST), Apr. 2021, pp. 383–393. doi: 10.1109/ICST49551.2021.00050. 

 C. Englund, E. E. Aksoy, F. Alonso-Fernandez, M. D. Cooney, S. Pashami, and B. Åstrand, 
“AI Perspectives in Smart Cities and Communities to Enable Road Vehicle Automation and 
Smart Traffic Control,” Smart Cities, vol. 4, no. 2, pp. 783–802, 2021, doi: 
10.3390/smartcities4020040. 

 M. Borg et al., “Exploring the Assessment List for Trustworthy AI in the Context of Advanced 
Driver-Assistance Systems, in Proc. of the 2nd Workshop on Ethics in Software Engineering 
Research and Practice (SEthics), 2021. Preprint: http://arxiv.org/abs/2103.09051 

 H. Ebadi, M. H. Moghadam, M. Borg, G. Gay, A. Fontes, and K. Socha, “Efficient and 
Effective Generation of Test Cases for Pedestrian Detection - Search-based Software Testing 
of Baidu Apollo in SVL,” in 2021 IEEE International Conference on Artificial Intelligence 
Testing (AITest), Aug. 2021, pp. 103–110. doi: 10.1109/AITEST52744.2021.00030. 

 M. Borg et al., “Ergo, SMIRK is Safe: A Safety Case for a Machine Learning Component in a 
Pedestrian Automatic Emergency Brake System,” arXiv:2204.07874 [cs], Apr. 2022, 
Accessed: Apr. 26, 2022. [Online]. Available: http://arxiv.org/abs/2204.07874 (under journal 
review) 

 J. Henriksson, C. Berger, M. Borg, L. Tornberg, S. R. Sathyamoorthy, and C. Englund, 
“Performance analysis of out-of-distribution detection on trained neural networks,” Information 
and Software Technology, vol. 130, p. 106409, Feb. 2021, doi: 10.1016/j.infsof.2020.106409. 

 Q. Song, M. Borg, E. Engström, H. Ardö, and S. Rico, “Exploring ML testing in practice – 
Lessons learned from an interactive rapid review with Axis Communications.” To appear in 
Proc. of the 1st International Conference on AI Engineering – Software Engineering for AI, 
2022. Preprint: https://arxiv.org/abs/2203.16225  

 M. H. Moghadam et al., “Performance Testing Using a Smart Reinforcement Learning-Driven 
Test Agent,” 2021 IEEE Congress on Evolutionary Computation, Jul. 2021. Available: 
http://www.es.mdh.se/publications/6271- 

 M. H. Moghadam, M. Borg, and S. J. Mousavirad, “Deeper at the SBST 2021 Tool 
Competition: ADAS Testing Using Multi-Objective Search,” 2021 IEEE/ACM 14th International 
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Workshop on Search-Based Software Testing, May 2021. Available: 
http://www.es.mdh.se/publications/6270- 

 M. H. Moghadam, M. Borg, M. Saadatmand, S. J. Mousavirad, M. Bohlin, and B. Lisper, 
“Machine Learning Testing in an ADAS Case Study Using Simulation-Integrated Bio-Inspired 
Search-Based Testing,” Mar. 2022. [Online]. Available: http://www.es.mdh.se/publications/6398- 
(under journal review) 

 M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, and B. Lisper, “An autonomous 
performance testing framework using self-adaptive fuzzy reinforcement learning,” Software 
Qual J, vol. 30, no. 1, pp. 127–159, Mar. 2022, doi: 10.1007/s11219-020-09532-z. 

7.2.2 Talks and tutorials 
 Course “Trained, not coded – Toward Safe AI in the Automotive Domain”, 6th International 

School on Software Engineering (ISE School 2020, the Free University of Bozen-Bolzano, 
Italy) 

 Quest4Quality's free webinar (Infotiv) 
 “Using Search-Based Software Testing to Guide the Strive for Robust Machine Learning 

Components - Lessons Learned Across Systems and Simulators in the Mobility Domain” 
Keynote at the 6th Int'l Workshop on Testing Extra-Functional and Quality Characteristics of 
Software Systems, Apr 4, 2022. 

 Trained, Not Coded - Beauty in Software 2.0 
 Beauty in Code Conference, Malmö, Mar 7, 2020. 
 9th Software Technology Exchange Workshop, Swedsoft, Virtual, Jan 22, 2021. 
 Science! by Infotiv, Virtual, Apr 8, 2021. 
 SMIRK, Scandinavian Conference on System and Software safety, 2022 

8 Conclusions and future research 
Safe and trustworthy AI is a key enabler to increase the level of vehicle automation. Several 
automotive standardization initiatives are ongoing to allow safety certification for DML in road 
vehicles, including e.g., ISO 21448 SOTIF. However, standards provide high-level requirements 
that must be operationalized in each development context. Unfortunately, there is a lack of publicly 
available ML-based automotive demonstrator systems that can be used to study safety case 
development.  
 
Within this project, a major scientific contribution is SMIRK, a PAEB designed for operation in the 
industry-grade simulator ESI Pro-SiVIC, available on GitHub under an OSS license. SMIRK uses 
a radar sensor for object detection and an ML-based component relying on a DNN for pedestrian 
recognition. Originating in SMIRK’s minimalistic ODD, we present a complete safety case for its 
ML-based component by following the AMLAS framework. To the best of our knowledge, this work 
constitutes the first complete application of AMLAS independent from its authors. We conclude 
that even for a very restricted ODD, the size of the ML safety case is considerable, i.e., there are 
many aspects of the AI engineering that must be clearly explained.  
 
In the project, with its industry-academia collaboration, we report several lessons learned. First, 
using a simulator to create synthetic data sets for ML training particularly limits the validity of the 
negative examples. Second, the complexity of object detection evaluations necessitates internal 
training within the project team. Third, composing the fitness function used for model selection is 
a delicate engineering activity that forces explicit tradeoff decisions. Fourth, what parts of an image 
to send to an autoencoder for OOD detection is an open question – for SMIRK, we stretch the 
content of bounding boxes to a larger square. 
 
The project results and findings (primarily represented by SMIRK) will enable future research in 
this direction: 
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- Study the efficient approaches to conduct safety assurance for extended ODDs. The open 
questions include how one can derive and agree with an open standard for ODD definition and 
how to build trustworthy ODDs as a base to communicate between smart traffic participants. 

- Exploration of the use of SMIRK as test benchmark 
- Further study the data specification and AI explainability in providing evidence to support the 

safety arguments  
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