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FFI in short 

FFI is a partnership between the Swedish government and automotive industry for joint funding of research, innovation 
and development concentrating on Climate & Environment and Safety. FFI has R&D activities worth approx. €100 
million per year, of which about €40 is governmental funding.  

For more information: www.vinnova.se/ffi 

 

 

 
  



 

 

1. Summary  

Intention recognition is the task of inferring an agent's intention based on its previous actions. It is 
crucial for human social intelligence which in turn enables understanding of, and the ability to 
predict, other humans' behaviours, such as for example other drivers' intent to overtake, stop, turn, 
or switch lanes. For making situation-based decisions, both autonomous and human drivers need 
to take the intentions of surrounding vehicles into account. This is especially true in a mix of 
autonomous and human drivers. 

Existing algorithms and models for intention recognition need to be improved with 
respect to accuracy, robustness, transparency, and scalability, in order to meet the requirements of 
the Swedish automotive industry and Trafikverket. It is an open research question how to meet 
these requirements. This lack of knowledge is a bottleneck for the automotive industry 
prohibiting the creation of novel advanced and intelligent automotive services and products based 
on social intelligence and intention recognition. 

The overarching goal of the project is knowledge transfer to industry of novel algorithms 
and models for intention recognition and about their interdependencies with available industrial 
data and needs, on a level sufficient for enabling ensuing commercial exploitation of the project 
results. To achieve this, the project will develop new algorithms for intention recognition 
specifically aimed for the Swedish automotive industry, based on current state-of-the-art in 
intention recognition and AI, as well as in statistical learning and sensor technology. The main 
coordinator is Volvo Cars, the industrial partner is SmartEye, and the academic partners are RISE 
AB and Högskolan i Skövde. Last, Trafikverket is the Swedish government partner.  
 
 
 
 
 
 

  



 

 

2. Sammanfattning på svenska 

 

Intention recognition är uppgiften att dra slutsatser om en agents avsikter baserat på dess tidigare 
handlingar. Det är avgörande för mänsklig social intelligens, vilket i sin tur möjliggör förståelse 
av och förmågan att förutsäga andra människors beteenden, såsom till exempel andra förarens 
avsikt att köra om, stanna, svänga eller byta körfält. För att fatta beslut baserade på situationen 
behöver både autonoma och mänskliga förare ta hänsyn till omgivande fordonens avsikter. Detta 
gäller särskilt i en blandning av autonoma och mänskliga förare. 
Befintliga algoritmer och modeller för avsiktsigenkänning måste förbättras när det gäller 
noggrannhet, robusthet, öppenhet och skalbarhet för att uppfylla kraven från den svenska 
fordonsindustrin och Trafikverket. Det är en öppen forskningsfråga hur dessa krav kan uppfyllas. 
Denna brist på kunskap utgör en flaskhals för fordonsindustrin och hindrar skapandet av nya 
avancerade och intelligenta fordons- och produkttjänster baserade på social intelligens och 
avsiktsigenkänning. 
Det övergripande målet med projektet är kunskapsöverföring till industrin om nya algoritmer och 
modeller för avsiktsigenkänning och deras beroenden av tillgängliga industriella data och behov, 
på en nivå som är tillräcklig för att möjliggöra efterföljande kommersiell exploatering av 
projektresultaten. För att uppnå detta kommer projektet att utveckla nya algoritmer för 
avsiktsigenkänning som är speciellt inriktade på den svenska fordonsindustrin, baserat på den 
aktuella state-of-the-art inom avsiktsigenkänning och artificiell intelligens, samt inom statistisk 
inlärning och sensor-teknologi. 
Huvudansvarig och koordinator är Volvo Cars. Industriell part är SmartEye. Akademiska partners 
är RISE AB och Högskolan i Skövde. Svensk myndighetspartner är Trafikverket. 

 

  



 

 

3. Background 

Problem description  
Intention recognition is the task of inferring an agent's intention based on its previous actions. It is 
fundamental for social intelligence, and it is used for predicting and understanding other humans' 
behaviour, allowing us to act accordingly. In the automotive setting, such behaviour could be fellow 
road users' intentions and actions, or it could be the intentions of a group of road users in traffic 
systems such as a road crossing. It can also be about the vehicle automatically detecting the 
intentions of the driver or the passengers for automatic activation or configuration of, for example, 
security systems in the vehicle. In all these examples, for making intelligent situation-based 
decisions, autonomous and human drivers as well as driver assisting systems need to take the 
intentions of surrounding vehicles, or drivers, into account.  

Intention recognition can be conceived in two very different ways. In the first sense, which 
has received much attention in the research community, intentions are identified with observable 
actions. This approach has the advantage that the recognition task can be approached using 
traditional machine learning inference techniques to predict intentions based on observed sequences 
of actions. However, this approach overlooks both that intentions can be used for distinguishing 
between two identical action sequences (Demiris, 2007), and that intentions often are independent 
of observations of some particular actions (Meltzoff, 2007).   

In the second sense, by contrast, intentions are conceived as distinct entities that, instead 
of being directly observable, have to be inferred from observed actions (and possibly a background 
theory), using for example temporal, causal, or spatial relations between observed actions. While 
rendering the recognition task exponentially more complex from a computational point of view, 
this sense of intentions addresses the two objections to the first sense above and is more in line with 
how intentions are conceived.  

The problem we address is that algorithms for intention recognition in the first sense enable 
creation of services that merely detect or predict actions, while not making it possible to reveal the 
intention, in the second sense, behind observed actions. For example, algorithms for intentions in 
the first sense can tell that a car has stopped or will stop, but they cannot tell why it stopped or will 
stop.   

In order to build capability for creating automotive services based on intention recognition 
in the second sense, and because of the higher complexity, existing algorithms need to be improved 
with respect to speed, precision, transparency, robustness, and scalability. For example, four issues 
that need improvement are:  

 Machine learning algorithms developed for the first sense of intention recognition 
lack precision and coverage when applied for intention recognition of the second sense.  
 Algorithms for the second sense of intention recognition rely on discernibility 

between observed sequences of actions for inferring intentions, which contributes to the 
complexity and slows down inference.   
 Logic-based approaches are not robust to uncertainty and do not scale well, but 

they are transparent and can have speedy inference in special cases.  
 Statistical learning approaches are not transparent and require extensive learning 

for achieving precision, but they are robust to uncertainty and very fast in inference.  
To address the problem, IRRA set out to use state-of-the-art knowledge and technology to improve 
existing algorithms for intention recognition and subsequently verify the suitability of the 
developed solutions in a number of proof-of-concept implementations based on industrial 
specifications. We focus on two areas for improvements: i) the area of action recognition where 



 

 

the observable actions are extracted from sensor data; and ii) the area of inference of intentions 
from recognized actions. This leads to the following two research objectives:  

1. Improve existing algorithms for action recognition to increase discernibility of observed 
sequences of action through computer vision and novel sensor technology, and through utilizing 
novel technology for localization of vehicles.  

2. Improve existing algorithms for inference of intentions based on observed sequences of 
actions. For example: using (i) self-supervised reinforcement learning for improving machine 
learning based approaches; (ii) data-driven reasoning (Prade, 2016) for improving logic-based 
approaches; and (iii) novel result in statistics concerning causality (Pearl, 2009) to improve 
approaches based on statistical learning.  
  
The specific requirements for the new algorithms are identified through concrete use cases based 
on three scenarios, described in Section Project Contents below. The scenarios reflect three 
industrially relevant perspectives of intention recognition: the driver perspective, the vehicle 
perspective, and the systems perspective. The use cases will be developed in the beginning of the 
project.   
 
State-of-the-Art () 
The task of intention recognition is performed in two steps: action recognition and inference of 
intentions. Action recognition is the basic task where the agent's actions are recognized. This can 
be made through targeted processing of video data (or generally: sensor data) for enabling the 
detection of a given set of relevant actions. IRRA set out to improve the action recognition step by 
fusing a number of sensor sources. In particular, wemainly use video to recognize actions and the 
recognized actions will serve as input to the inference step, together with localization, and driver 
state. The inference step consists of matching the discovered action sequences with a model that 
associates action sequences with intentions. The inference step involves also the selection of one 
intention among a potentially large number of candidates. Next, we give a short state of the art for 
the main research topics of the proposed project: video-analysis, maps for localization, and 
intention recognition.  
  
Video analysis for action recognition  
A well-studied field in computer vision is scene understanding with methods suitable for action 
recognition. The procedure of scene understanding can be broadly divided to semantic 
segmentation and scene classification. Semantic segmentation is the first step towards scene 
understanding. It is based on low-level features, for instance colour, edges, and illumination. The 
approaches for feature selection have been conveyed also in the subtasks of lane and road detection, 
traffic sign recognition, and vehicle detection. Furthermore, contextual information is important for 
semantic segmentation. Using contextual information, the generally applied models of scene 
understanding can be subdivided as graphical models, convolutional networks, cascaded classifiers, 
and edge detection-based approaches (Seyedhosseini et al., 2016).   

Markov Random Fields (MRF) and Conditional Random Fields (CRF) are the most popular 
Graphical Models approaches. In Pele et al. (2009), an inference technique was proposed for MRF 
to minimize a unified energy function. In Xuming (2004), a CRF method was presented for 
labelling images. In (Sudderth et al., 2008), a hierarchical Dirichlet process was developed to model 
visual scenes. Convolutional networks-based approaches have emerged recently to dominate most 
of the state-of-the-art. In (Grangier et al., 2009), a convolutional network was trained for scene 
parsing. In (Chen et al., 2014) a deep convolutional network in combination with CRF was shown 
to improve the semantic segmentation performance.   



 

 

In Heitz et al. (2009) a different architecture for making multiple classifiers fusion into a 
cascaded classifier model was proposed for scene understanding. In Li et al. (2012) a feedback 
enabled cascaded classification model was presented to mutually optimize several subtasks in scene 
understanding where each classifier was considered in series. Therefore, the training process of a 
cascaded classifier model was considerably simpler than convolutional networks (Seyedhosseini et 
al., 2016). Edge Detection based approaches are also popular. Various unsupervised methods have 
been applied for edge detection. In Seyedhosseini et al. (2016) a contextual hierarchical model was 
used to distinguish between “patches centered on an edge pixel” and “patches centered on a non-
edge pixel”.   

As most scenes are composed of objects in a highly variable layout, scene classification is 
an important problem for surroundings perception. In the literature, scene classification has been 
focused on binary problems, such as distinguishing indoor from outdoor scenes. Inspired by the 
way how the human perception system works, numerous efforts have been dedicated to classifying 
a large number of scene categories. The most popular method is the “bag-of-features”. It represents 
images as order-less collections. The features can be extracted by the Scale-invariant feature 
transform (SIFT) (Lowe, 2004) or the HOG method (Dalal et al., 2004). In Sánchez et al. (2013), 
the SIFT was presented to abstract visual features and these features were encoded to a Fisher 
kernel framework for scene classification. In Zhou et al. (2014), a convolutional neural network 
(CNN) was proposed to perform scene classification.   

Recently, the model of “bag-of-semantics” was presented. In this model, an image is 
extracted as a semantic feature space. It has the capability to perform a spatially localized semantic 
mapping. In Su et al. (2012) a number of classifiers for each individual semantic class was trained 
for object classification. In Li et al. (2014), a high-level image representation encoding object 
appearance and spatial location information was presented. In Dixit et al. (2015) a semantic Fisher 
vector, which is an extension of the Fisher vector to bag-of-semantics, was applied to classify image 
patches.   
 
 
Intention recognition   

A model for intention recognition typically uses so-called plan-libraries, relating sequences of 
actions with intentions. Plan-libraries can be man-made or induced through machine learning. 
Recognition of intentions is made by inference, based on the plan-library and an observed sequence 
of actions. Observations of sequences of actions are made via action recognition techniques, as 
described above. For inference of intentions, one needs first to match the observed actions with the 
action sequences modelled in the plan-library, and then to select an intention based on the matched 
sequence. It is the two steps in the inference phase that give rise to the computational complexity 
of, and challenges in modelling, intention recognition. Among the challenging factors are domain-
specific characteristics such as adversary agents disguising their intention (Mao and Gratch, 2004); 
concurrent intentions (Hu and Yung, 2008); multiple agents (Sadelik and Kautz, 2010); uncertainty 
about intentions (Charniak and Goldman, 1993); partial observability of actions; and noise in 
agents' plan execution (e.g., Roy et al., 2007), in monitoring patients with Alzheimer's disease). 
Consequently, one of the main foci in intention recognition has been on finding models bridging 
this complexity, for example, by exploiting hierarchical structures in plans (Kautz and Allen, 1986). 

The formalization of intention recognition was initially based on methods from logic 
(Schmidt 1978; Kautz and Allen 1986) and on AI-approaches to planning (Kautz, 1987). Hobbs et 
al. (1993) were among the first to use abduction to reason about intent, which has become the 
predominant approach in the logic-based community. Charniak and Goldman (1993) introduced a 



 

 

probabilistic approach to the problem, based on Bayesian Belief Networks, which is also the 
approach that has received the most attention. Both the logical and Bayesian approaches are still 
actively researched (Sadri, 2010). 

There is a long tradition of using statistical learning for intention recognition; however, 
these approaches often identify intent with directly observable actions and cannot feasibly and 
efficiently be used for recognizing intention based on relations between observed actions (as we 
aim for in the proposed project). For example, Bui et al. (2002) used Hidden Markov Models to 
infer intentions as hidden states, and Schultz et al. (2015) use a variant of Conditional Random 
Fields. Many of the more successful approaches have been hybrids of logical- and probability-
based approaches. Goldman et al. (1999) use probabilistic Horn abduction, and Huber et al. (1994) 
use Bayesian Logic Programs. 

Intention recognition has been applied in several diverse domains, just to mention a few: 
automotive (Schultz et al., 2015) for recognizing pedestrian intent, and (Berndt et al., 2008) for 
early detection of driver intention, and (Da Lio et al., 2015) for automated co-drivers; elderly care 
(Roy 2007) for monitoring Alzheimer patients; military (Mao and Gratch, 2004) for understanding 
adversary actions; and team sports (Sadelik and Kautz 2010; Intille 1999; Gudmunsson and Horton 
2017). 

  



 

 

4. Purpose, research questions and method 

Project contents  
The proposed project will be based on work with a number use cases from three scenarios. The 
project will initially define these use cases based on available data and concrete exploitation 
possibilities. The scenarios cover three aspects of intention recognition: in-cabin driver intentions; 
the intentions of drivers in vehicles close to host vehicle; and intentions of the participants in a 
traffic system.   
  
o Scenario 1 (In-vehicle and driver environment perspective: driver intention and state 
modelling). Driver intention can have decisive impact on the utility of the activation of various 
vehicle systems (e.g., safety or automation).  The project will initially develop use cases that reflect 
concrete needs of driver intention recognition from the automotive industry and/or the society.  
  
o Scenario 2 (Vehicle perspective: Intentions of drivers of interacting vehicles) An 
important area of research is that of vehicle intention recognition, where the host vehicle can benefit 
from understanding and predicting the intention of vehicles that affect the host vehicle's range of 
action alternatives. The project will in the initial phases develop concrete use cases for vehicle 
intention recognition reflecting needs from the automotive industry and/or the society.  
 
o Scenario 3 (System-based intention recognition). System-level intention recognition is 
characterized by understanding an individual person’s or vehicle’s behaviour in the context of the 
traffic state around them, as opposed to focusing merely on its own past behaviour. The system-
level approach is characterized by (1) the use of V2X technology to gain a more complete picture 
of the traffic state than is possible from a single point of view, (2) the notion that the system state 
determines behavioural priors and that taking these priors into account can improve the accuracy 
of predicted actions, and (3) the objective of improving the safety and efficiency for all affected 
parties through understanding and managing collective behaviour and dynamics of traffic. 

 
Methodology 
 
This section aims to provide a high-level outline of the methodological underpinnings of the work 
carried out in the project. To enable the data collection, a collaboration between Volvo Cars and 
Smart Eye AB was required to integrate the systems into a vehicle. The driver and environment 
monitoring work package (WP-2) relied on open-source datasets, previously collected datasets, as 
well as the data collected from our own data collection endeavours. The exploratory analyses of 
how and what data to analyse, served as a foundation for developing the intention recognition 
algorithms in the other work packages.  The “Vehicle perspective: Intentions of drivers of 
interacting vehicles” (WP-3) research work was based on the expertise from senior researchers at 
RISE. Work package 4 (System perspective of intentions) outlines future work based on the 
encountered challenges by reviewing existing methodologies and datasets. Work package 5, 
Intention Recognition for multi-agent scenarios, is jointly carried out by Högskolan i Skövde and 
Volvo Cars. For the industrial PhD, weekly meetings are held to supervise and align the research. 
The dissemination and demonstration of the work is conducted through scientific publications, and 
workshops with the project partners.  
 



 

 

 
5. Objective 

The project aims at developing technology that enables introduction of new services and products 
that build on intention recognition. Some of the areas that may benefit from this are passive/active 
safety, autonomous drive, and energy usage prediction. In particular, the present proposal fit the 
objectives of the subarea Green, Safe, Autonomous & Connected functionalities of the 
programme.   
 
This project aimed to contribute to the following overarching FFI targets:  
 Increased capacity for research and innovation ensuring the competitiveness of the Swedish 

automotive industry and Trafikverket.  
 Encouraged collaboration between the industrial, academic, and societal sectors.  

  
The proposed project will contribute to the following targets of the program for Elektronik, 
Mjukvara, och Kommunikation:   
1.  The project will contribute to the competitiveness of Swedish automotive industry through 
exploration and development of methods for industrial exploitation of artificial intelligence.   
2.  The project will reinforce collaboration between industry, research institutes, academia, 
and government agencies. All four sectors are represented by the project partners. The sectors 
represent different concept of values and modes of operation, and the proposed project will lead to 
improved practices for similar future collaborations.   
3.  Among the applications that can benefit greatly from the results of IRRA, there are many 
that also fit into the area of Green, Safe, Autonomous & Connected functionalities. In particular, 
the project will initially develop concrete use cases guiding the research, and three potential targets 
for this development are autonomous drive, safety and user prediction for function- and service 
automation.  
  
While the aim of the proposed project is an enabling technology, we would like to point out that 
the proposed project is also relevant for the programs Trafiksäkerhet och automatiserade fordon 
and Effektiva och uppkopplade transportsystem.  
  



 

 

6. Results and deliverables 

6.1 Data collection and procurement (WP 1) 
Work Package 1 Data collection and procurement 

Responsible Volvo Cars  
Other participants TrV, SEYE 

 
1. Data collection 

For this project data was collected in a sensor equipped vehicle (see Figure 1. Data collection 
vehicle with decal informing road users of the collection process.) on real roads (see general 
region in Figure 2).  
 

 
To capture the exterior driving scene, two full HD USB cameras were used, mounted inside of the 
car, one facing forward and one facing backwards. The decal on the side of the car informed road 
users that the data collection process was ongoing and if anyone did not wish to be part of the 
research data, they could communicate it via a specially created webpage. 
 
To capture the interior of the vehicle including the driver, two Smart Eye camera systems were 
used. One-camera driver monitoring system (DMS, see Figure 3a) was placed behind the steering 
wheel capturing head, face and eyes of the driver, while one-camera cabin monitoring system (CMS 
see Figure 3b) was placed above the rear-view mirror capturing the entire cabin including full upper 
body of the driver (see Figure 4). Both camera systems operate using near IR light that makes them 
independent from the ambient light, which allows collecting data both when it is light and dark 
outside. Recorded signals include, but are not limited to, head position in 3D, head orientation, face 
tracking, gaze direction, glance area estimation, eye tracking, eye lid opening, pupil tracking, mouth 
opening, body pose, objects in the car, objects in hands, and others. Most of the signals contain 
information about the signal quality, which can be further used to calculate uncertainty of the 
intention recognition output (see Figure 5 and Figure 6). 
 

 

 
 
Figure 1. Data collection vehicle with decal informing 
road users of the collection process.  

 
Figure 2. Overview of the data collection region 

 



Figure 3. (a) Smart Eye DMS system to the left and (b) prototype CMS system to the right.

Figure 4. Smart Eye DMS and CMS installation in the data collection vehicle.

Figure 5. Example of Smart Eye DMS image capture and signals.



 

 

  
Figure 6. Example of Smart Eye CMS image capture and signals. 

 
To capture vehicle dynamics an internal data collection unit was used. It captured signals, such as 
yaw-rate, steering wheel angle, velocity. Additionally, it synchronized the data from the various 
streams, to ensure that all observations had a timestamp, and sent the data via a safe connection 
back to the secured portals. 
 
Data collection process on the high level is presented in Figure 7. After the data had been collected, 
the raw video footage was only retained for four weeks, due to privacy regulations, and could only 
be accessed by verified project members in a contained room. There the data was processed and 
harmonized. After that the processed data excluding any image and video footage was securely 
stored with limited access for verified project members. 

 

 
Figure 7. Overview of the data collection process for this research project. 

 
 
Reflections and challenges. Transferring gigabytes of video data over a secured wireless 
mobile network connection has proven to be difficult. As a result, we lost hours of driving data 



 

 

due to connection and transfer errors. Moreover, handling, synchronizing, and labeling of the 
data requires a lot of time and resources.  

 
2. Data procurement 

 
Any algorithm development and testing require data. And neural network algorithms require 
lots of data. Additionally, in most cases the data has to be labeled and contain specific use 
cases. In this project data was collected in the real car on the real roads, but due to limitations 
in time and resources that data could not cover all the algorithm development that was planned 
and conducted in this project. Therefore, in addition to that data partners looked for other data 
sources. Some partners found suitable data internally, others turned to open-source datasets. In 
some cases, additional annotations and labels were needed and in others they all were already 
there. The great efforts of the team resulted in suitable datasets covering all project needs. 

 
  



 

 

6.2 Driver and environment monitoring (WP 2) 
 

Work Package 2 Driver and environment monitoring 
Responsible RISE 
Other participants Volvo Cars, SEYE 

 
6.2.1 Object detection, depth and pose estimation exploration. 
In order to detect the objects and traffic entities in front and around the car, and estimate their spatial 
location, we implemented a system that operates on dashcam video streams.  To achieve a high 
framerate, we used the at-the-time state-of-the-art YOLOv5 to detect entities. YOLO provides 
bounding boxes and labels for the detected classes of objects.  In order to find the distance of the 
objects, we used another, pretrained neural network model that computes depth from video. It was 
trained on data from the KITTI dataset which consists of video, laser scanner, and human tagged 
entities like cars, cyclists, vegetation, traffic signs/poles, pedestrians, sidewalks, etc.  Figure 8 
shows an interface that visualizes the application of the two neural network models on a video 
stream. 
 

 
Figure 8. A Vision-to-Distance pre-trained neural network for determining the distances to objects. The histogram to 
the right shows the distributions of per-pixel distances in the image’s bounding boxes as detected by the model (colour 
coded for the five bounding boxes). The histogram lets us determine the distance of the nearest object to be around 6-7 
meters. 
 



 

 

 
Figure 9. Labels and locations of objects found in a sequence of video stream frames. 
 
When the software operates on a continuous video stream, it generates a table of rows records with 
object labels and positions, see figure 9. The figure shows the software applied to the videos from 
the JAAD dataset.  
 
We have also investigated the detection of cars and pedestrians using YOLO4 and various 
lightweight versions of YOLO. The primary goal was to measure how often the algorithm missed 
detecting a vehicle or a pedestrian. In addition, our exploration extended to lane and blinker 
detection. Furthermore, we extracted locations of joints (such as arms, legs, and head direction) of 
detected individuals using Alpha Pose, a multi-person pose estimation system, along with Pose 
Flow as a tracking algorithm. Figure 10 illustrates the accurate estimation of multi-person poses. 
However, occasional misjudgements of human-like objects and the neglect of small human objects 
are among the weaknesses of this algorithm. 
 

 
Figure 10. Multi pose estimation using Alpha Pose. 

 
The output of this stage is intended to be used as input to the more high-level, and semantically 
interpreted description of the scene. 
 



 

 

While all of the subcomponents of this design have been independently improved in the opensource 
community in the last few years, the overall design of the component-based vision system is still 
valid, and can easily and seamlessly benefit from the speed improvements by just upgrading.  
  
6.2.2 Data processing and automatic environment representations 
In addition to exploration of object detection, and proximity estimation of road users, we rely on 
an automated pipeline to process the videos collected with the data collection vehicle. Similar to 
the exploration above, we implemented a pipeline with YOLOv8 and ByteTrack (Zhang et al., 
2022) to identify road users across different frames. To segment the drivable area in the frames, we 
rely on Grounded-Dino (Liu et al., 2023) and Grounded-SAM, which enables segmenting any 
arbitrary object based on a text prompt (see Figure 11). Afterwards, the tracking results and 
bounding boxes are used to construct dynamic discrete evolving graphs for each video frame 
(Figure 12).  
 

Figure 11. From left to right: Original observation, object detection, drivable road segmentation. 

   
Figure 12. Representation of the driving scene as a connected graph for various frames. Each node represents a unique 
tracking ID of an observed object. 

 
6.2.3 – Driver state recognition 
 
Driver state recognition using cameras supports the decision process in the vehicle safety system. 
Driver states play a crucial role in traffic safety, as they directly influence a driver's ability to 
respond to road conditions, make decisions, and operate a vehicle safely. Understanding and 
monitoring these states can significantly reduce the risk of accidents. Here are some key driver 
states of interest for traffic safety. 
 
Alertness and Attention: 
Fully Alert: The ideal state for driving, where the driver is fully engaged, aware of their 
surroundings, and capable of responding quickly to changes. 
Inattentive: Occurs when a driver's attention is diverted from the driving task, whether due to 
external distractions (e.g., mobile phones, infotainment systems) or internal distractions (e.g., 
daydreaming). 
 
 



 

 

Drowsiness: 
Characterized by reduced alertness and slowed reaction times, often resulting from insufficient 
sleep, long periods of driving, or monotony. It significantly increases the risk of accidents due to 
the potential for microsleeps or decreased vigilance. 
Fatigued: Beyond just sleepiness, fatigue encompasses overall physical and/or mental exhaustion, 
impairing the driver's ability to concentrate and make decisions. 
 
Emotional States: 
Stressed or Anxious: High levels of stress or anxiety can impair decision-making abilities, increase 
aggressiveness, and lead to risky driving behaviours. 
Angry or Aggressive: Also known as "road rage," this state can result in aggressive driving 
behaviours, such as speeding, tailgating, and unsafe lane changes. 
 
Impairment: 
Alcohol or Drug Impairment: Consumption of alcohol or other drugs significantly impairs 
judgment, coordination, and reaction times, making driving highly dangerous. 
Medication Effects: Certain medications can cause drowsiness, dizziness, or other side effects that 
impair driving ability. 
 
Cognitive Overload: 
Overwhelmed: Occurs when a driver is presented with too much information or too many tasks at 
once, leading to a decrease in the ability to effectively process information and make safe driving 
decisions. 
 
Health-Related Impairments: 
Vision Impairments: Any condition that affects visual acuity, peripheral vision, depth perception, 
or colour recognition can compromise driving safety. 
Physical Disabilities: Physical limitations can affect a driver's ability to control the vehicle, 
necessitating specialized adaptations for safe driving. 
Medical Conditions: Conditions such as epilepsy, diabetes, or heart disease can pose. 
 
Detection of driver state 
Advancements in vehicle technology and driver monitoring systems are increasingly capable of 
detecting these states in real-time, offering added information in the task of predicting a potential 
accident. 
 
In the IRRA project Smart Eye focused on providing Alertness and attention on road and handling 
food together with development of a new variant of drowsiness estimation based on neural networks 
as described below. 
 
Alertness to road is an important factor as non-alertness leads to slow or no reaction on a forward 
threat. Eating or drinking degrades the reaction performance as hesitation will be part of the 
process- where can I put my food? Drowsiness provides the vehicle with added information on 
reaction time and potential risk for sleep. This part is a very challenging area, and this is where 
Smart Eye invested most resources. 
 
Driver state drowsiness development is a gradual process that can be monitored through various 
lower-level signals, primarily focusing on eye movement patterns, pupil dynamics, and other 
physiological and behavioural cues. Understanding these signals is crucial for developing systems 



 

 

that can detect and mitigate the risks associated with drowsy driving. Here's a detailed breakdown 
of how drowsiness can be assessed based on these lower-level signals provided by the driver 
monitoring system. 
 
Eye opening and closure pattern is a widely used metric for drowsiness detection. It measures the 
eye opening over time as drowsy drivers tend to have slower blink rates and longer blink durations, 
leading to increased periods of eye closure. The pupil movements and diameter are another 
important indicator affected by drowsiness. 
Pupil size fluctuations: The diameter of the pupil can vary due to changes in lighting, cognitive 
load, and drowsiness. Under conditions of constant lighting, variations in pupil size can indicate 
shifts in alertness, with drowsiness often leading to a reduction in pupil diameter.  
Blink frequency: An increase or decrease in blink rate can indicate fatigue. Typically, as a person 
becomes drowsier, the rate at which they blink may initially increase, followed by a more 
significant slowdown.  
Blink duration: Drowsy individuals often exhibit longer blink durations. Prolonged closures can 
significantly impair driving performance by increasing reaction times and reducing situational 
awareness. 
Slow Eye Movements (SEMs): As drowsiness sets in, the smooth pursuit movements of the eye 
can become slower and may include microsleeps, where the eyes may drift slowly off target.  
Saccadic Movements: The speed and accuracy of rapid eye movements from one point to another 
can be affected by drowsiness. A delay in initiating saccades or a decrease in saccadic velocity may 
indicate fatigue.  
Head movement and posture is also an indication where monitoring the position and movement of 
the head can provide additional cues about a driver's state of alertness. For example, frequent 
nodding or a drooping head position can indicate drowsiness. Changes in how a driver sits or 
maintains their posture can also be indicative of fatigue, with slumping or adjustments in seating 
position being potential signs.  
Integration Driver monitoring systems can also potentially analyse facial expressions for signs of 
fatigue, such as yawning, frequent rubbing of the eyes, or other facial cues indicating tiredness. 
Typically, an increase in yawning frequency is correlated to drowsiness. 
 
The key to effective drowsiness detection lies in the continuous and real-time analysis of these 
lower-level signals, allowing for early detection and timely intervention. Such systems are 
becoming increasingly sophisticated, incorporating not only the direct physiological and 
behavioural indicators of drowsiness but also contextual factors such as time of day, driving 
duration, and patterns of vehicle control inputs.  
The development of driver drowsiness in the IRRA project is linked to the Karolinska Sleepiness 
Scale (KSS). Smart Eye integrated above-described signals and trained a machine learning models 
to assess the driver's state of alertness. By analysing the combination of eye movements, blink 
patterns, pupil dynamics, and head movements, the system was able to predict an estimated 
drowsiness level following the KSS scale giving the safety system the ability to take into account 
the drowsiness level of the driver to provide the right countermeasure like alerting the driver or 
initiate an earlier countermeasure to prevent an accident. 
The development in the project followed standard practices. 
 
Integrating signals to assess drowsiness levels based on the Karolinska Sleepiness Scale (KSS) 
through a neural network approach involves a sophisticated analysis that combines various 
physiological and behavioural cues. The KSS is a subjective scale used to measure an individual's 
level of sleepiness during certain duration (usually 5 min), typically ranging from 1 (extremely 



 

 

alert) to 9 (very sleepy, great effort to keep awake, fighting sleep). Translating this subjective scale 
into an objective measure using driver monitoring signals and neural networks involves several 
steps. The actual data used for the development was pre-collected and pre-annotated. 
Neural Network Design: A neural network architecture suitable for time-series analysis and pattern 
recognition, such as Recurrent Neural Networks (RNNs) or Convolutional Neural Networks 
(CNNs). Long Short-Term Memory (LSTM) networks, a type of RNN, are particularly effective 
for sequences of data and may be well-suited for detecting patterns in physiological signals over 
time. After selection of method next is the design of the input layer to accept the extracted features 
from the preprocessing step. The network needs to process sequences of data to account for the 
temporal dynamics of drowsiness development. The output layer of the networks is trained to 
correspond to an estimated KSS level based on the sequence of data that has been provided in the 
last 5-minute interval. In the end it was formulated as a regression problem (predicting the exact 
KSS rating) and a classification problem (categorizing the state into bins such as alert, slightly 
sleepy, very sleepy, etc.). Both methods were tested. 
 
In the validation step cross-validation was introduced to ensure that the model generalizes to unseen 
data. This involves dividing the collected data into training and validation sets and iteratively 
training the model while monitoring its performance on the validation set to prevent overfitting. 
 
To conclude, our findings show that by leveraging neural networks to analyse and integrate various 
physiological and behavioural signals, it's possible to develop a dynamic and accurate system for 
real-time drowsiness detection based on estimated KSS levels. This approach enables a nuanced 
understanding of drowsiness development, providing a valuable tool for enhancing driver safety. 
  



 

 

6.3 Vehicle perspective: Intentions of drivers of interacting vehicles (WP 3) 
Work Package 3 Vehicle perspective: Intentions of drivers of interacting vehicles 

Responsible RISE 
Other participants  

 
In this work package we have explored two different approaches for intention recognition: one 
logic-based and one statistical model based. 
 

1. Logic-based approach 
 
Traditional logic approaches to intent recognition have been based on automated planning 
frameworks (Sadri, 2011). In automated planning, one attempts to automatically derive a series of 
actions that transform an initial state to a given goal state. In the logical approach to intention 
recognition, the problem is the reverse given a sequence of actions and states of the world, the task 
is to find out which plan or which goal the actions are aimed at. 

We tried a different logical approach to intent recognition by considering intent as a mental 
state and using an existing logical calculus in a novel way. The existing calculus has been used in 
legal and normative reasoning and it allows to rule out certain states of affairs (such as whether it 
is permitted or not to perform an action), based on observations (Sergot, 2001).  

We used the calculus and a modal logic, with an operator for intent, to exhaustively 
generate all possible intentions a driver may have, with respect to a specific driving behaviour, in 
a traffic situation (such as turning left in a junction.) 

The greatest challenge in the task was to transform traffic and vehicle data into valuations 
of logical atoms with which to, as a conclusion of a logical deduction, logically filter out possible 
intent of the driver that are inconsistent with observation. One aspect of the challenge was to handle 
uncertainty and artefacts in the data stream, to which logical models are sensitive. This was 
accomplished by applying Gaussian smoothing filters to the data, which smoothed out spikes and 
artefacts. The second aspect of the challenge was the interfacing between data and logical formulas. 
This was tackled by imposing reasonable (and challengeable) assumptions on driver behaviour. 

The approach was implemented in Python and demonstrated to the consortium. The 
implementation includes the logical calculus, statistical smoothing, and the interface between data 
and logical evaluations. Based on streaming data of vehicle position and speed the implemented 
calculus returned a logical encoding of driver intent. 
 

2. Statistical model approach 
 
The approach here is to use a statistical model, Prototype-based classification (Gillblad et al., 2008), 
which has previously been used for example for troubleshooting technical systems. This is a hybrid 
between a statistical machine learning model and a knowledge-based representation of the classes. 
In this case it means that the expected appearance of different potential intentions is described in 
terms of high-level features, and these human-provided intention descriptions, so called 
“prototypes”, are then used as training data in a highly regularized statistical machine learning 
model based on Bayesian statistics. The high-level features are primarily meant to be detected in 
images around the car, such as surrounding vehicles, pedestrians or other traffic users, traffic lights 
and signs, car blinkers and break lights, animals, obstacles, etc. Some information may be easier to 
get from other sources than image analysis. For example, type of road, number of lanes, speed 
limits, position of traffic lights and pedestrian crossings might be received with higher precision 
and reliability from a traffic map service than from the image. 



 

 

 
The rationale for this approach is (as previously discussed) the high complexity of the intention 
recognition task together with the very limited amount of real (labelled) data which would be 
available for each of the interesting intentions we wish to detect. For example, a deep-learning 
approach going from image to intention in one step, would need a rich variety of cases of each 
intention to be able to discern what the relevant characteristics of each intention are. Instead, we let 
the image analysis identify common objects and their properties, and then we use human knowledge 
to characterize the interesting intentions in terms of these objects and their relations. 
  
Once a system like this will be employed at a larger scale all over the world, sufficient training data 
will eventually become available. As a steppingstone towards that situation, this knowledge/data 
hybrid approach is necessary. An advantage with the proposed solution is that it can seamlessly 
combine human provided prototypes with real data. The prototype is used as an initial prior which 
is then gradually refined as real data arrives. 
   
The use case we have considered here as illustration of the technique is that there is a car standing 
still or running slowly in the same lane in front of the own car. To be able to decide whether to 
overtake it or not, it is important to figure out why it is doing that. E.g., if its intention is to wait for 
a passenger we might overtake it, but if it is waiting for a red traffic light we should better not. 
  
To this end we have produced a set of prototypes, characterizing different situations and intentions 
which might explain the behaviour of the car in front of us. Each prototype is associated with a 
recommendation whether to overtake (if considered safe based on other traffic) or wait behind it 
(until the situation changes or new evidence is available). That is, in a situation where our car 
catches up a car ahead in our lane and given a set of features identified in the camera images and 
from map services, these prototypes can be used to produce a recommendation to overtake or stay 
behind the other car.   
 
 
 
 
  



 

 

6.4 System perspective of intentions (WP 4) 
 

Work Package 4 System perspective of intentions 

Responsible RISE 
Other participants (Volvo Cars), TrV 

 
Work package 4 was restructured during the runtime of the project. Its new aim was to outline and 
develop the basis for a successor project to IRRA with a focus on the system perspective of 
intentions, which otherwise hasn’t been actively covered in the project. To this end, a work group 
around members of RISE and Trafikverket built a consortium and developed the core idea for a 
project called “Radar-Based Intelligent Traffic State Analysis and Predictions for V2X (RABITS)”. 
The details and state of the RABITS research initiative at the time of writing are presented below 
after a detailed definition of system-level intention recognition. 
 
We define system-level intention recognition to be characterized by the following 3 aspects: 

(1) Use of V2X information: Using V2X information to enrich the information used locally 
on the vehicles to more accurately predict intentions and future behaviour of other road 
users. By leveraging data from vehicle-to-vehicle (V2V) and vehicle-to-infrastructure 
(V2I) communications, the system gains a more comprehensive understanding of the traffic 
environment beyond the immediate sensory range of individual vehicles. 

(2) Behavioural analysis based on system state: This entails the analysis of behavioural 
probabilities or priors for behaviour that depend on the state of the traffic system. The 
configuration (e.g., type, position, speed, signaling, etc.) of vehicles ahead of (or around) 
a target vehicle can inform behavioural priors for this driver/vehicle. The approach of 
system-level IR takes such factors into account to improve the overall accuracy of inferred 
intentions and behavioural predictions for individual vehicles. 

(3) The objective of enhancing safety and efficiency: System-level intention recognition 
aims to optimize the flow and efficiency of traffic at a system-wide level, anticipate and 
mitigate traffic congestions, and improve overall safety. It isn’t merely focused on the 
intentions of individual road users, but about understanding and managing the collective 
behaviour and dynamics of traffic. It may therefore include recommendations for the 
behaviour of vehicles that optimize not just an individual’s safety and efficiency but the 
entire traffic system’s safety and efficiency. 

 
We illustrate this concept of system-level intention recognition with an example: Sensors installed 
as part of the infrastructure (e.g., radar sensors on a gantry above the highway) inform a locally run 
traffic model and AI-based recommendation system which informs approaching vehicles about the 
traffic state (flow and speed, vehicle constellations, risk-levels, etc.) in the upcoming stretch of road 
and prompts automated vehicles to, e.g., reduce their speed, increase the distance to the vehicles 
ahead, temporarily avoid lane changes, or directly assigns lanes to individual vehicles. This could 
mitigate the development of traffic jams, reduce risk of accidents around congestion and traffic 
jams, and lead to optimizations in energy use of vehicles in the given area. 
 



 

 

Consortium Members 
Leon Sütfeld (RISE), Joakim Rosell (RISE), Sepideh Pashami (RISE), Xiaoliang Ma (KTH), 
Tomas Julner (Trafikverket), Ellen Grummert (VTI) 
 
Project Outline 
The RABITS project is planned as a successor to the IRRA project and aims to exploit available 
radar data in the context of V2X features for increased safety and efficiency on large roads. 
Potentially extracted features encompass traffic state prediction, intention recognition, anomaly 
detection, and more. The developed technology is intended (1) for use in advanced ADAS and AD 
functions in vehicles, either as unidirectional information from the infrastructure or in a collective 
perception framework, (2) as marketable service features for roadside radar system operators, and 
(3) to advance the SOTA in traffic analysis and driving behaviour research. 
 
The project has access to a large amount of data from gantry-mounted radar stations across Sweden. 
The in- tended data collection will happen from ~5-10 stations depending on the use cases (to be 
determined), likely including the E4 South near Stockholm. All data will be collected, stored and 
provided by Trafikverket from NavTech Radar sensors. The data features trajectories and speeds 
of vehicles in a range of approximately 500m per station, is clocked at 4Hz, and includes lane 
classification. 
 
Use Cases 
The focus use cases for this research project will be determined by and in discussion with the use 
case providers, e.g., Volvo Cars (sought) and NavTech Radar. Potential V2X use cases are ample 
and encompass safety and efficiency, as well as traffic patterns and driving behaviour: 
 
Safety 
◦ Road condition analysis (behavioural imprints of rainy/icy conditions) 
◦ Anomalous behaviour detection (e.g., intoxicated drivers, road rage, tailgating; accident risk) 
◦ Anomalous traffic flow conditions (e.g., accident detection) 
◦ Gap creation (merging at on-ramps)  
◦ Traffic jam warning (speed reduction before traffic jam in sight) 
 
Efficiency 
◦ Congestion analysis & prediction 
◦ Flow optimization & wave-breaking (AD & ADAS) 
◦ Platooning (AD) 
 
Traffic Patterns & Driving Behaviour 
◦ Trajectory prediction / lane change / behavioural models for simulation 
◦ Traffic flow and congestion predictions (performance single station vs. multiple stations) 
 
 
Funding 
Multiple funding options for the RABITS project are being considered: 
◦ Direct assignment (by project partner) 
◦ VINNOVA FFI 
◦ Trafikverket Portfolio: Möjliggöra 
◦ EU HORIZON-CL5-2024-D6-01-04 (as work package in larger project) 



 

 

 
Partners & Project Roles 
◦ RISE (Gothenburg, Stockholm): traffic state analysis, behavioural models, intent recognition, ML 
solutions 
◦ KTH Traffic Lab (Stockholm): traffic forecasting, ML solutions 
◦ VTI (Stockholm): ITS solutions, traffic models 
◦ Trafikverket (Stockholm): data collection, data provision, problem owner 
◦ NavTech Radar (UK): hardware & data owner, use case provider 
◦ Volvo Cars (Gothenburg): participation sought, decision pending 
 
 
 
 
 
  



 

 

6.5 Intention Recognition for multi-agent scenarios (WP 5) 
 

Work Package 5 Intention Recognition for multi-agent scenarios  
Responsible HIS 
Other participants  Volvo Cars, Smart Eye 

 
1. Pedestrian intention recognition 

Recognizing Pedestrians’ intention to cross a street and predicting their imminent crossing action 
are major challenges for advanced driver assistance systems (ADAS) and Autonomous Vehicles 
(AV).  During the project a master thesis project within data science was conducted on the topic of 
pedestrian intention recognition using feature fusion within a neural network architecture. In 
contrast to most of the earlier work on pedestrian intention recognition that focused either on using 
handcrafted features or on end-to-end deep learning approach, we investigate the impact of fusing 
handcrafted features with auto learned features by using a two-stream deep neural network 
architecture. The proposed method achieved very good results on the JAAD (Rasouli et al. 2017) 
dataset. Depending on if we considered only the immediate image frames before or image frames 
half a second before the crossing, we received prediction accuracy of 90%, and 84%, respectively 
(Hamed, 2020) 

The work was extended and disseminated with two publications. In Hamed & Steinhauer 
(2021a) we addressed the pedestrian action prediction problem using the JAAD dataset and studied 
the impact of pedestrian-related and vehicle-related handcrafted features in a deep learning 
approach considering a scenario where we tried to predict the crossing action 0.5 seconds (15 
frames) ahead of the actual action. In Hamed & Steinhauer (2021b) we substantially extended the 
approach by addressing both, intention recognition and action prediction. We propose a new neural 
network architecture and highlight the impact of context-related features and train and test our 
model on the large-scale dataset PIE (Rasouli et al. 2019) while also considerably extending the 
lookahead to 1.5 seconds (45 frames) ahead of the crossing action (or the car passing the pedestrian 
who is not crossing). This larger time frame is particularly needed when we want to predict a 
crossing intention rather than just the imminent crossing action. We evaluate our approach on the 
recently suggested benchmark by Rasouli et al. (2019) and show that our approach outperforms 
current state of the art models.  
 

2. Learning individual driver’s mental models 
 
Advanced driver assistant systems are supposed to assist the driver and ensure their safety while at 
the same time providing a fulfilling driving experience that suits their individual driving styles. 
What a driver will do in any given traffic situation depends on the driver’s mental model which 
describes how the driver perceives the observable aspects of the environment, interprets these 
aspects, and on the driver’s goals and beliefs of applicable actions for the current situation. 
Understanding the driver’s mental model has hence received great attention from researchers, 
where defining the driver’s beliefs and goals is one of the greatest challenges. We attempted to 
establish individual drivers’ temporal-spatial mental models of a situation by considering driving 
to be a continuous Partially Observable Markov Decision Process (POMDP) wherein the driver’s 
mental model can be represented as a graph structure following the Bayesian Theory of Mind 
(BToM). The individual’s mental model can then be automatically obtained through deep 
reinforcement learning. Using the driving simulator CARLA and deep Qlearning, we demonstrate 
our approach through the scenario of keeping the optimal time gap between the own vehicle and 
the vehicle in front (Darwish & Steinhauer, 2020). 



 

 

 
3. State-of-the-art literature study of driver intention recognition  

 
Dynamic Bayesian Networks, Hidden Markov Models and Deep Neural Networks have 
predominantly been applied to recognize driving maneuver intentions (Vellenga et al., 2022). Since 
2016, DNNs have become the favorite approach for driver intention recognition, and the reliability 
and used dataset size increased. However, due to the costly and sensitive nature of collecting 
naturalistic driving data, most studies rely on proprietary datasets. This prohibits a general 
benchmark and comparison between the methods. There are multiple open-source datasets that can 
be used for driver intention recognition from multiple perspectives. For example, the Brain4Cars 
dataset consists of more than 1000 miles of in-cabin and external camera footage collected in San 
Franscisco (Jain et al., 2016), and the Honda Research Institute Driving Dataset (HDD, Ramanishka 
et al., 2018) consist of 104 hours of lane branch, lane change, merge, park, passing, and turn 
maneuvers and includes camera, vehicle dynamics and LiDAR observations.  
 

4. Understanding and Estimating Uncertainties for Driver Intention Recognition   
 

 
Figure 13. Schematic overview of the surrogate uncertainty estimation approach 

Applying artificial intelligence (AI) in a safety-critical context like driving requires a careful 
approach. One of the current challenges of AI is to handle unseen and rare scenarios in a safe way 
(Hendrycks et al. 2021). Moreover, regular deep neural networks (DNNs) do not produce 
uncertainty estimations about produced predictions. In line with upcoming AI regulations (e.g., EU, 
USA, Japan), a driver intention recognition (DIR) system should be able to quantify how certain it 
is about the produced predictions. Uncertainties originate from several sources, such as 
measurement errors, statistical model induction, regularization effects (Darling, 2019). To yield 
uncertainty estimates from a regular DNN, one can use probabilistic DNNs (PDNNs, Gawlikowski 
et al. 2021). A downside of estimating the uncertainty for every instance while making use of a 
PDNN is that multiple inferences for a single instance are required. To overcome this 
computationally expensive property of PDNNs, we tested for multiple probabilistic deep learning 
(PDL) methods (Variational Inference, Monte-Carlo Dropout, Stochastic Weight Averaging – 
Gaussian and a Deep Ensemble) to understand if we can learn to reproduce the uncertainty 
estimations with a surrogate model. For each of the PDL methods we estimate the uncertainty for 
the train instances and train a multi-headed deterministic DNN to simultaneously recognize the 
driving intentions and estimate the uncertainty. In Vellenga et. al (2023) we found that the surrogate 
models based on the Monte-Carlo dropout and Variational Inference models produced significantly 
higher uncertainty estimates for incorrectly classified test instances. In practice this would mean 
that, if test properly, one would not have to perform multiple inferences for each instance and still 
get an uncertainty estimate. 
  



 

 

5. Evaluation of deep neural network design for driver intention recognition. 
 

 
Figure 14. Overview of the Neural Architecture Framework 

Given the limited computational capabilities available in a car and that the majority of most recent 
DIR studies rely on DNNs to achieve state-of-the-art performance (Xing et al. 2020, Rong et. al 
2021, Ma et al. 2023), we investigated how to motivate the design of the network most effectively. 
We performed a neural architecture search (NAS) for three DNN layer types (an LSTM, TCN or 
TST), using different information fusion strategies to combine data from different sensors, and 
eight search optimization strategies (Random Search, Hill-Climbing, Particle Swarm Optimization, 
Regularized Evolution, Gaussian Process, Tree-structured Parzen Estimators, Policy based 
reinforcement learning and Latent Action Neural Architecture search) on two DIR datasets. NAS 
consists of defining a search space, which we build by considering the depth and width of the 
networks. Afterwards, the search strategy iteratively samples networks from the search space and 
aims to achieve the best value for a set objective, such as accuracy or performance. Compared to 
the manually designed models, we observed improved performance for the NAS sampled 
architectures. Moreover, for both datasets we found that a more complex model does not necessarily 
lead to improved performance.  
 

6. State-of-the-art video-based driver action and intention recognition 
 

 
Figure 15. Overview of the multi-video setup. Video representations are learned by two video masked auto encoders, 
after which attention fusion (AF) is performed to create a joint embedding. 

Traffic fatalities remain among the leading death causes worldwide. To improve road safety, car 
safety is listed as one of the most important factors. To actively support human drivers, it is essential 
for advanced driving assistance systems to be able to recognize the driver’s actions and intentions. 



 

 

Prior studies have demonstrated various approaches to recognize driving actions and intentions 
based on in-cabin and external video footage. Given the performance of self-supervised video pre-
trained (SSVP) Video Masked Autoencoders (VMAEs) on multiple action recognition datasets, we 
evaluate the performance of SSVP VMAEs on the Honda Research Institute Driving Dataset for 
driver action recognition (DAR) and on the Brain4Cars dataset for driver intention recognition 
(DIR). Besides the performance, the application of an artificial intelligence system in a safety-
critical environment must be capable to express when it is uncertain about the produced results. 
Therefore, we also analyzed uncertainty estimations produced by a Bayes-by-Backprop last-layer 
(BBB-LL) and Monte-Carlo (MC) dropout variants of an VMAE. Our experiments show that an 
VMAE achieves a higher overall performance for both offline DAR and end-to-end DIR compared 
to the state-of-the-art. The analysis of the BBB-LL and MC dropout models show higher 
uncertainty estimates for incorrectly classified test instances compared to correctly predicted test 
instances. 
 

7. An intention recognition framework for modelling, inferring and predicting 
intentions for the chosen use cases based on scenario. 

 
Figure 16. Foundational framework centered around the requirement to provide design choice documentation for a 
high-risk AI-based DIR system. 

Previous studies have proposed frameworks to guide the safe design, validation and evaluation of 
AI-based systems (e.g., Salay and Czarnecki, 2019; Pereira and Thomas, 2020; Mock et al., 2021; 
Häring et al., 2021). While these frameworks provide essential steps for safe AI system 
development, Tarrisse and Massé (2021) and Neto et al. (2022) argue that most of these initiatives 
are still work-in-progress and lack details about methods and about the influence of the processes 
on each other. Therefore, and drawing from the insights of the included papers, we formalize and 
complement previous efforts to guide safe high-risk AI system design and integration in Figure 12. 
This framework centers around the upcoming requirement to motivate the design choice of a high-
risk AI-based system and how it affects the performance. Given the evolving nature of technology 
and ML methodologies, it is necessary to periodically review and extend the framework. Initially, 
we include three dimensions that should be considered when empirically motivating the design. 
The processes of this framework consist of system design motivation, transparent decision-making, 
risk management, and performance monitoring. 



 

 

 
6.6 Exploitation and Business Value (WP 6) 

Work Package 6 Exploitation and Business Value 
Responsible Volvo Cars 
Other participants SEYE, TrV 

 
 
Possible applications 
The domain of intention recognition has a wide range of applications in the automotive industry. 
The following is a brief description of few possible applications of intention recognition systems 
in the automotive industry. 
 

 Advanced Driver Assistance Systems (ADAS): Intention recognition can be used to predict 
the driver's intentions behind certain actions. By analysing their behaviour, such as gaze 
direction, hand movements, and body posture, systems can better anticipate manoeuvres 
like lane changes, turns, or braking, thereby improving the safety measures and actions 
taken by of the ADAS systems. 

 
 Driver Monitoring Systems: Intention recognition methods can be integrated into 

technologies where driver monitoring systems are used to detect driver distraction, fatigue, 
or drowsiness. By analysing the eye movements, facial expressions, and body posture, it 
could be possible to infer the driver's intentions or mental state. These methods in 
combination with other sensor fusion technologies could be used for triggering alerts that 
could improve driver attention or take interventions when necessary. 

 
 Personalized Driving Experience: Intention recognition can help in creating a more 

personalized driving experience. For example, the intentions of the drivers or the occupants 
to use certain comfort and convenience functions could be developed based on historical 
patterns in usage of the functions. These in combination with external data such as the 
preferences of the driver or occupants in certain situations could further fine tune the 
personalization predictions. Furthermore, the intention recognition methods in 
personalisation could be used to learn and adapt to a driver's habits, preferences, and 
intentions including but not limited to adjusting settings such as seat position, climate 
control, or infotainment options etc. 

 
Industrial PhD as bridge between academia and industry 
The Volvo Industrial PhD program (VIPP) serve as a bridge between academia and industry, 
fostering collaboration and knowledge exchange between Volvo cars and the academia. The VIPP 
program typically involves a doctoral student conducting research within the industrial 
environment while being supervised by both academic and industry mentors. The VIPP program 
emphasizes both methodological and applied research areas that addresses real-world problems 
faced by the automotive industry in general and also specific to the ambitions of Volvo cars. By 
working closely with both academia and industry, the industrial PhD candidates facilitate the 
transfer of knowledge, methodologies, and best practices between these two domains in both 
directions. The goal is that the industrial PhD candidates bring academic expertise into the 
industrial setting and identifying relevant research methodologies applicable to the practical 
challenges faced by Volvo cars. In this context of intention recognition, the project has provided 
the industrial PhD student access to resources, facilities, infrastructure, and data that is relevant for 



 

 

developing methods for intention recognition that are relevant to use cases in the automotive 
industry. These enabled the collaboration between the academia and industry to conduct research 
in context of automotive industry relevance. This nature of research is one step closer towards 
enabling industrialisation of developed methods which have led to more applicable outcomes. The 
current industrial research had focus on practical applications of intention recognition in the 
automotive industry and collaboration between academia and industry.  
 
Production readiness and challenges 
Although intention recognition methods have significant potential applications, the 
industrialization of intention recognition methods in the automotive industry presents several 
challenges. The methods need to accurately interpret various signals and cues from drivers, 
pedestrians, and other vehicles which remains a challenge especially in complex real-world traffic 
and user contexts. High quality and reliable datasets are key enablers for the intention recognition 
models. Such diverse datasets constitute a wide range of scenarios, behaviours and environmental 
conditions. Identifying and collecting diverse datasets is both challenging and time consuming. The 
intention recognition models, and the systems must be robust and should be able to handle 
uncertainties and edge cases. Furthermore, the functions employing the intention recognition 
models shall handle and adapt to variations in driving behaviour and environmental changes. When 
it comes to personalisation applications, the systems may also need to adapt to driving styles, 
cultural aspects of driving. Collection and processing data related to human intentions may raise 
concerns about privacy and ethical aspects. Therefore, the industry needs to balance the need for 
data collection while ensuring privacy of the end users and thus gaining trust in the data collection 
environments is a significant challenge. Deploying the intention recognition models or systems 
with intention recognition methods into vehicles involves complying with the existing safety and 
regulatory standards within the automotive industry. Thus, the safety and reliability aspects of 
system employing intention recognition methods or frameworks, and their integration into existing 
vehicle safety functions are very critical. 
 
While complete intention recognition algorithms are not yet ready for production programs, during 
this project, Smart Eye has made big progress in driver and cabin monitoring signals. That not only 
can support intention recognition algorithms in the future but is something that will be moved into 
production development to modify and complement output signals of Smart Eye products. 
  



 

 

6.7 Demonstration and Proof-of-Concept (WP 7) 
 

Work Package 7 Demonstration and Proof-of-Concept 
Responsible Volvo Cars 
Other participants  SEYE, TrV, RISE 

 
Below a brief overview of the various partner seminars, workshops, and demos as part of 
the IRRA-project.  
 

Topic Presenter 
IRRA definition of intention H. Joe Steinhauer 
Methods for intention recognition Koen Vellenga 
Progress in the logic-based intention recognition approach Björn Bjurling 
Learning individual drivers’ mental models using POMDs and BToM Amena Darwish 
IRRA use case workshops All 
Smart Eyes´ Interior Sensing Systems: Driver and interior monitoring. 
Data collection capabilities and potential insights 

Svitlana Finer 

 
  



 

 

7. Dissemination and publications 

7.1 Dissemination 

How are the project results planned to be 
used and disseminated?  

Mark 
with X 

Comment 

Increase knowledge in the field X  
Be passed on to other advanced 
technological development projects 

X  

Be passed on to product development 
projects 

X  

Introduced on the market  Remains difficult given the technology state and safety 
requirements from both the industry and regulators. 

Used in investigations / regulatory / 
licensing / political decisions 

X  

7.2 Publications 
 Darwish, A., & Steinhauer, H. J. (2020). Learning individual driver’s mental models using POMDPs 

and BToM. In Proceedings of the 6th International Digital Human Modeling Symposium (pp. 51-
60). 

 Hamed, O. (2020) Pedestrian Intention Recognition: Fusion of Handcrafted Features in a Deep 
Learning Approach. Independent thesis Advanced level (degree of Master (One Year)), 10 credits 
/ 15 HE credits, University of Skövde 

 Hamed, O., & Steinhauer, H. J. (2021). Pedestrian's Intention Recognition, Fusion of Handcrafted 
Features in a Deep Learning Approach. In Proceedings of the AAAI Conference on Artificial 
Intelligence (Vol. 35, No. 18, pp. 15795-15796). 

 Hamed, O. & Steinhauer, H. J. (2021b). Pedestrian Intention Recognition and Action Prediction 
Using a Feature Fusion Deep Learning Approach. The 18th International Conference on Modeling 
Decisions for Artificial Intelligence: MDAI  

 Vellenga, K., Steinhauer, H. J., Karlsson, A., Falkman, G., Rhodin, A., & Koppisetty, A. C. (2022). 
Driver intention recognition: State-of-the-art review. IEEE Open Journal of Intelligent 
Transportation Systems. 

 Vellenga, K., Karlsson, A., Steinhauer, H. J., Falkman, G., & Sjogren, A. (2023). Surrogate Deep 
Learning to Estimate Uncertainties for Driver Intention Recognition. In Proceedings of the 2023 
15th International Conference on Machine Learning and Computing (pp. 252-258). 

 Vellenga, K., Steinhauer, H. J., Falkman, G., Björklund, T. (2024). Evaluation of Video Masked 
Autoencoders' Performance and Uncertainty Estimations for Driver Action and Intention 
Recognition. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer 
Vision (pp. 7429-7437). 

 Vellenga, K., Steinhauer, H. J., Karlsson, A., Falkman, G., Rhodin, A., & Koppisetty, A. C. (2024). 
Designing deep neural networks for driver intention recognition. Under submission to: Engineering 
applications of artificial intelligence (Elsevier journal). 

 Vellenga, K. (2024). Advancing Deep Learning-based Driver Intention Recognition: Towards a safe 
integration framework of high-risk AI systems. Licentiate Thesis, University of Skövde.  

 



 

 

8. Conclusions and future research 

We conclude our work in the IRRA project by reflecting upon the work across the various work 
packages (WPs). Each WP targeted specific aspects of intention recognition, ranging from data 
collection to advanced algorithm development, and testing their integration for practical 
applications. In this section, we summarize the key findings and advancements made in each WP, 
highlighting how they collectively contribute to advancing the field of intention recognition in the 
automotive sector. 
 
WP 1: Data Collection and Procurement 
Key Achievements: WP 1 laid the groundwork by establishing robust data collection methodologies. 
Despite challenges in data transfer and synchronization, effective strategies were developed for 
gathering and processing real-time vehicular and environmental data, essential for enhancing 
intention recognition algorithms and algorithms supporting them. Additionally, to the obtaining 
data through data collection, other ways of data procurement were established to ensure that needs 
of the project are met.  
 
Implications: This foundational work ensures that subsequent packages are fed with high-quality, 
relevant data, crucial for the development of accurate and efficient intention recognition systems. 
 
WP 2: Driver and Environment Monitoring 
Achievements: WP 2 delivered a framework for extracting necessary features from images. This 
involves combining existing pre-trained methods and fine-tuning for a given task. Additionally, 
we have explored the potential of training new models to extract features that are not typically 
captured, such as brake light detection. 
 
Implications: The analysis based on pre-trained networks achieved reasonable results and the 
extracted features can be utilized in WP3. However, the extraction of certain non-typical features 
(e.g., brake lights) requires adequately labelled data. The collection or generation of such labelled 
images is therefore a logical next step. Moreover, the length of the historical context should be 
extended for more accurate and robust models. 
 
WP 3: Vehicle Perspective: Intentions of Drivers of Interacting Vehicles 
Achievements: WP3 introduces logical and statistical models designed to understand the current 
active situation and to reason about upcoming potential scenarios.  
 
Implications: A more diverse set of detected features would enable improved generalizability of 
models such as those in WP2 across various scenarios. Additionally, accuracy and robustness of 
the models could be enhanced by integrating additional data sources such as map data, which 
provide context beyond the features visible in camera images. 
 
WP 4: System Perspective of Intentions 
Achievements: Due to the restructuring of this WP the work was confined to the preparation of a 
follow-up project. To this end, a comprehensive definition of system-level intention recognition 
was developed, a consortium was built, access to a large and relevant dataset secured, and 
funding opportunities were explored. 



 

 

 
Implications: The consortium will finalize a project application to one of the named tenders. By 
introducing the idea of collaborative or shared perception to intention recognition, the sought 
RABITS project has great potential to enhance the robustness and effectiveness of intention 
recognition in AD and ADAS systems. 
 
WP 5: Intention Recognition for Multi-Agent Scenarios 
Achievements: This WP tackled multiple complex intention recognition scenarios involving 
multiple agents, such as pedestrian intention recognition and ego-vehicle driver intention 
recognition as well as individual driver mental model analysis. Novel deep neural network 
architectures and reinforcement learning models achieved state-of-the-art performance on multiple 
intention recognition benchmarks, which represent the contribution of the IRRA project to 
significant advancements in the field. 
 
Implications: The outcomes of this WP do not only advance the technical capabilities in intention 
recognition but also set a precedent for integrating regulatory frameworks within AI development 
in the automotive sector. This holistic approach ensures that the technological advancements are 
robust, ethically sound, and compliant with regulatory standards, paving the way for safer and more 
efficient implementation of AI in critical domains. 
 
WP 6: Exploitation and Business Value  
Achievements: This work package performed a feasibility assessment, affirming the applicability 
of intention recognition research in the automotive industry. It highlights the industrial relevance 
of the research, identified mechanisms for effective knowledge transfer, and evaluated the 
production readiness of intention recognition systems, ensuring their practical integration into the 
automotive sector. 
 
Implications: The implications of this work are profound, particularly in enhancing safety measures 
and reshaping the driving experience. The successful application of intention recognition in, for 
example, Advanced Driver Assistance Systems (ADAS) promises proactive responses to driver 
manoeuvres, improving overall safety. Additionally, integration with Driver Monitoring Systems 
and personalized driving experiences underscore the potential for transformative advancements, 
setting new standards in the automotive industry and influencing future technological 
developments. 
 
Overall Conclusion 
The IRRA project's approach to intention recognition encompassed a wide range of methodologies 
and applications and has significantly advanced the understanding and capabilities in this domain. 
Each WP contributed to this goal, from foundational data collection to sophisticated modeling of 
intentions in complex scenarios. These results not only enhance the field of intention recognition 
but also have practical implications, particularly in improving safety and efficiency in the 
automotive sector.  
 

  



 

 

9. Participating parties and contact persons.  

Academic partners:  
HIS – H. Joe Steinhauer 
HIS – Göran Falkman 
HIS – Alexander Karlsson 
 
RISE – Leon Sütfeld (leon.suetfeld@ri.se) 
RISE – Björn Bjurling (bjorn.bjurling@ri.se) 
RISE – Anders Holst (anders.holst@ri.se) 
RISE – Sepideh Pashami (sepideh.pashami@ri.se) 
RISE – Lars Rasmusson (lars.rasmusson@ri.se) 
RISE – Åsa Rudström (no longer at RISE) 
RISE – Henrik Malmgren (no longer at RISE) 
 
Industry:  
Smart Eye AB – Henrik Lind (henrik.lind@smarteye.se) 
Smart Eye AB – Svitlana Finér (svtilana.finer@smarteye.se) 
Smart Eye AB – Raimondas Zemblys (raimondas.zemblys@smarteye.se) 
 
Volvo Car Corporation – Koen Vellenga  
Volvo Car Corporation – Ashok Koppisetty  
Volvo Car Corporation – Hampus Grimmemyhr  
Volvo Car Corporation – Asli Rhodin (no longer at VCC) 
Volvo Car Corporation – Ivana Jern (no longer at VCC) 
Volvo Car Corporation – Koshan Emani (no longer at VCC) 
 
Industrial partner:  
Trafikverket – Tomas Julner (tomas.julner@trafikverket.se) 
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