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1 Summary

In modern industry, the recognition and analysis of failures ensure product
quality, safety, and optimize manufacturing costs. The HEALTH project
focuses on building sequence models capable of collecting and exploiting the
complete truck history to reveal the correlation between various failures and
predict the potential risk of components in the trucks.
Nowadays, trucks are equipped with a number of sensors and telematic
equipment to continuously monitor and capture their state over time. The
Logged Vehicle Data (LVD), repair information and Diagnostic Trouble Code
(DTC) are the useful data sources and tool to exploit at taking multiple
aspects of vehicles’ population to identify risk and underlying cause of failures
and correlation between features on a specific component. The decisions from
the models identify which vehicles are likely to fail, and which corrective
actions to suggest based on the most probable failure causes.
In the HEALTH project, the collaboration between Halmstad University
and Volvo Trucks Aftermarkets led to the deployment of the classifiers for
prediction of failures for several components such as turbocharger and air
bellow. In addition, advanced machine learning systems are developed for data
preparation and aggregation including; a system using Generative Adversarial
Neural Network to handle the data imbalance; clustering solutions to detect
high risk vehicles and faulty vehicles. Further, sequential modeling, which
was the focus of this research, implemented using stochastic Markov process
to represent a different aspect of the truck history as well as designing various
recurrent neural network systems to predict different component’s failures and
remaining useful life using different sources of data. Finally, causal relations
between the features has been analysed.
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2 Sammanfattning (in Swedish)

nom modern industriverksamhet används igenkännandet och analyserandet
av fel till att säkerställa produktkvalitet och säkerhet, samt till att optimera
tillverkningskostnader. HEALTH-projektet har fokuserat p̊a utvecklandet av
sekvensmodeller som är kapabla att samla in och utnyttja lastbilars hela
historik för att finna sambandet mellan olika typer av fel och prediktera risken
för kommande fel p̊a komponenter p̊a lastbilarna.
Nuförtiden är lastbilar utrustade med många sensorer och telematik för att
kontinuerligt övervaka dess status över tid. Loggade fordonsdata (LVD), repa-
rationsdata och diagnostiska felkoder (DTC) är användbara datakällor att
utnyttja som verktyg för att ta in åtskilliga aspekter av fordonspopulationen
i syfte att upptäcka risker, underliggande orsaker till fel samt korrelationer
mellan egenskaper för specifika komponenter. Besluten fr̊an modellerna iden-
tifierar vilka lastbilar som kan vara p̊a väg att f̊a ett fel, samt kan föresl̊a
vilka de bästa reparations̊atgärderna kan vara, baserat p̊a de mest sannolika
felorsakerna.
I HEALTH-projektet har samarbetet mellan Halmstad Högskola och Volvo
Lastvagnars eftermarknadsorganisation lett till användande av klassificerare
i syfte att prediktera fel p̊a olika komponenter som t.ex. turboaggregat
och luftbälgar. Utöver detta är flera system för avancerad maskininlärning
utvecklade för förberedande databehandling och aggregering. Detta inkluderar:
Ett system som använder generativa motverkande nätverk (GAN) för att
hantera obalanserade data; Lösningar för klustring i syfte att detektera
riskgrupper av fordon samt fordon med fel; Sekventiell modellering, vilket har
varit i fokus för denna forskning, som har implementerats genom användande
av stokastiska Markov-processer för att kunna representera olika aspekter av
fordonens historik. Dessutom har olika neurala nätverkslösningar utvecklats
för att prediktera komponentfel och återst̊aende komponentlivslängd. Slutligen
har även orsaksrelationer mellan egenskaperna analyserats.

3 Background

Maintenance is the main part of the total operation plan and costs in modern
industries. This is significantly important for customers since it provides and
ensures a level of reliability, availability and safety requirements.
In addition to the above criteria, customers expect continued improvement in
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the quality of products together with increased functionality, so that vehicles
are becoming more personalized and specialized. Such product diversity is
desired by manufacturers’ sale divisions as means of attracting customers’
attention. However, the diversity in product brings out new challenges for
maintenance strategy in the longer term when trying to understand the
failures in components, weak spots and flawed designs sourced by different
reasons. Growth in the number of failures for certain components is often
an indicator of a quality issue. This will also translate into an increase in
costs that a manufacturer has to pay on warranty claims and a decrease in
customers’ trust and satisfaction. Therefore, it is important to detect the
imminent increase of the failures as quickly as possible, or even to predict
it before it happens. Analysing multiple available resources with the aim
of deriving useful knowledge from products during their operations enables
the manufacturers to increase awareness of the quality problems. It also
supports Original Equipment Manufacturers (OEMs) in making decisions to
initiate corrective actions as soon as possible. Original Equipment Manufac-
turers (OEMs) of commercial transport vehicles basically outline maintenance
plans taking into consideration different parameters such as age and millage.
Within these plans, machine learning approaches have been widely applied
to monitoring of equipment condition of vehicles. It has been shown that
machine learning is exceptionally beneficial in failure prediction and discov-
ering patterns of interest in data. For example, Lu [Lu and Meeker, 1993]
provided a general nonlinear regression technique based on condition monit-
oring data that is capable of approximating the remaining life distributions
of degrading components. In [Chinnam, 1999] Chinna introduces a neural
network-based model for online estimation of component reliability. Similarly,
Shao et al. [Shao and Nezu, 2000] model the root mean square vibration value
as a time series and evolves neural network models to predict the health of a
roller bearing. Later, Maillart et al. [Maillart and Pollock, 2002] introduced
a policy to determine the required frequency of condition monitoring. They
exploited the method of stochastic dynamic programming to build a schedule
that reduce the cost of maintenance. All of those methods, however, are
based on analysing current sensory measurements.
Today’s availability of large amounts of data give us the opportunity to make
predictions based not only on the currently measured state of the truck,
but also on all the important events and conditions that affected them in
the past. New machine learning techniques will lead to novel solutions for
predictive maintenance, and many, even unanticipated, problems can be
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avoided [Nowaczyk et al., 2013, Prytz et al., 2015, Khoshkangini et al., 2019].
In the HEALTH project, we used Adversarial Neural Network [Ganin et al.,
2016] to handle the imbalancy of the huge amount of logged vehicle data,
which are captured during the vehicle operation. We exploited sequence
models such as Markov Models (MM) [Eddy, 1998] and Recurrent Neural
Networks (RNNs) [Graves et al., 2013] to address the limitations of existing
approaches. Hidden Markov models (HMMs) are an extension of the Markov
chains in which an observed sequence is based on an unknown sequence of
unobserved states [Stratonovich, 1965].
The main challenges to be dealt with using these methods was capturing
the features from data which are more likely to interpret the hidden pattern
behind failure. In the HEALTH project we also took advantage of the abilities
of RNNs to handle sequential dependencies and better capture contextual
information.

4 Purpose, research questions and method

In HEALTH project multiple solutions in the form of several technical sections
have been developed to explain the relations between failures, as well as
predicting the components’ failures in trucks. The HEALTH project used
the available resources such as DTC and Logged Vehicle Data at building a
sequential modeling in a novel fashion to early detection of failures in the
vehicles, which are operating. The following work packages were included in
the project:

• Work package 1 (WP1) was about extraction, pre-processing and ag-
gregation of the available data, in order to define the states needed for
sequential modelling. Sequences of observed or partially observed states,
associated with events, were needed for modelling the complete lifelong
truck history.

• Work package 2 (WP2) was about the intention to represent different
aspects of truck histories under the assumption that the states of interest
have been identified (see WP1) and can be sufficiently well identified
from the available data.

• Work package 3 (WP3) was about the investigation on methods that can
model vehicle histories as sequences of unobserved or partially observed
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states. This work package was developed to extend work package 2
assuming that all the parameters affecting the condition of the truck
can be observed.

• Work package 4 (WP4) was about exploiting the knowledge to identify
causal relationships. For example, to present how different processes
affect different faults, and to support aftermarket experts in designing
improved maintenance schedules.

• Work package 5 (WP5) was about the demonstrator that constructed
based on the algorithms, which were developed in work packages 1-4 over
the project, showcasing the benefits coming from predictive maintenance
in heavy duty vehicles. These results either integrated with current
platform or presented at Volvo for identifying promising methods for
future integration.

5 Objectives

HEALTH project achieved the following objectives which are well aligned
with the stated objectives in the application.

• Optimising supervised classifiers for predicting failures of various vehicles’
components,

• Developing sequential models to capture the complete truck history,

• Integrating and pre-processing of different sources of data,

• Deploying and integrating machine learning solutions in Volvo trucks
production environments,

• Contributing on more than 10 scientific publications and master theses.

• Transferring knowledge and developing machine learning competence.

The results in the following sections address each of these sated goals.
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6 Results and deliverables

The results obtained in HEALTH project divided into two main parts of
Scientific and Industrial aspects. The first aspect associated to the devel-
opment of novel methods for representing lifelong histories of trucks and
using them for machine learning. While the second aspect focused more on
implementation, deployment and evaluation of the Machine Learning methods
and approaches in the real business setting. These separate focus areas have
led to presentations, software and several conference and journal publications.
In this section, we will present an overview of the insights we have obtained.

6.1 Contribution to FFI and ML program goals

We have contributed to the following FFI goals:

• More sustainable society
A more sustainable society can be achieved through prolonged vehicle
life. It is quite clear that a well-maintained vehicle, one that will keep
running for as long as possible, leads to less pollution, better utilisation
of materials, etc. In addition, the environmental impact of a vehicle
in bad condition is often substantially higher than the eco-friendly,
well-maintained one.

• New predictive maintenance strategy
Quality is crucial for the competitiveness of Swedish automotive cluster.
Manufacturing companies and dealers continuously track re-occurring
and trending problems by monitoring predictive maintenance in a large
scale. Volvo Trucks is one of the first OEMs to introduce uptime promise
as a service. New predictive maintenance solutions introduced in this
project support the manufacturers to increase customer satisfaction.

• Improving the knowledge on data analytics
HEALTH contributes to an increase in data analytics competence
within Volvo Trucks. In addition, predictive maintenance services could
promote workshop workers’ competence by communicating not only
which component is potentially unhealhty, but also the reason behind
this assessment.
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• Timely and cheaper transport solutions
Fleet management and logistics can be improved by taking into account
the predicted failure of the vehicles for timely scheduling of maintenance
occasions.

• Safer traffic
HEALTH enhances traffic safety by providing solutions to avoid break-
downs on the road, which often cause dangerous situation resulting in
accidents or a stranded situation.

We have contributed to the following ML program goals:

• Robust modeling
The HEALTH project contributes to development of methods for ro-
bust modelling, optimization and decision making processes based on
available data.

• Technology and development
Considering the modern vehicles as complex systems, new machine
learning developments in HEALTH allow the manufacturers to be able
to capture, describe, and predict their condition, behaviour and future
operation in a sufficiently accurate way.

• Personalized maintenance functionality
HEALTH project develops a service offering that can provide personal-
ized maintenance functionality, based on actual usage, conditions and
specific needs of individual vehicles. This level of personalization is
not possible without Machine Learning, however, currently available
solutions are insufficient in dealing with the complexities of real business
settings.

6.2 WP1: Data processing, aggregation, and cluster-
ing

The following experiments and results target Ob1 under WP1.

6.2.1 Handling data imbalance using Adversarial Neural Networks

In this section we study effects on learning models due to class imbalance
on data and algorithmic level. Class imbalance refers to binary or multiple
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class data where the number of instances from one class, called the majority
class, is significantly higher than the other class(es), called the minority
class(es) [Japkowicz, 2000]–. In this scenario, standard learning methods
perform poorly as they develop a bias in favour of majority class [Liu et al.,
2008]. A solution for this problem is to use undersampling or oversampling
methods at the data level. Drawback of undersampling is information loss,
while oversampling might lead to exact replicas of existing samples [Liu et al.,
2008]. To learn the true underlying distribution of the data, we will explore
several variants of Generative Adversarial Networks (GANs), as they have
the capability to capture the key characteristics of the data they are trained
on [Ganganwar, 2012].

Data

In this experiment, we have used 67038 histogram samples of Volvo data from
3376 trucks, which were logged over a three year period. The data consists
of two variables, engine RPM and engine torque, where the information
expresses the time spent in each configuration defined by the combination
of the two variables. The axes typically contain twenty divisions, and each
histogram contains four hundred values. Plotted with one variable on each
axis, the histograms resemble images consisting of coloured squares. Figure ??
shows an example of a histogram.
The values in the histograms are cumulative, and are typically downloaded
from the trucks every second week. For each truck, we had the complete
history captured in bi-weekly histograms. From this data, we created a
labelled data set in the following manner. For each truck, the histogram
data was labelled healthy by default. If there had been a repair at a certain
date, the histogram data from that date to three months before that date
were labelled unhealthy. The reasoning behind this is that we expect the
degradation of engine components to manifest itself in the data before it
breaks down. Note that we are equating repair date with break down date.
This gave us a data set containing 87% healthy histograms and 13% unhealthy
histograms. In order to generate samples using the oversampling methods
we used different proportion of data with different dimensions, namely 400,
400, 268 and 15. The oversampling experiments were divided into four cases,
referred to as case 1, case 2, case 3 and case 4).
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Oversampling Methodology

In this section we explain how we investigated to mitigate the class imbal-
ance using several different varieties of general adversarial networks (GANs)
including; Vanilla GANs (VGANs) [Goodfellow et al., 2014], Wasserstein
GANs (WGANs) [Arjovsky et al., 2017], conditional GANs (CGANs) [Mirza
and Osindero, 2014] and boundary equilibrium GANs (BEGANs) [Berthelot
et al., 2017]. The resulting balanced data sets were evaluated on the failure
prediction problem using stochastic gradient descent (SGD) and random
forests (RF) models. Additionally, we compared the GAN balanced data
with data balanced by traditional oversampling methods, namely with ran-
dom oversampling (ROS) and synthetic minority oversampling technique
(SMOTE). Finally, we tried one new variant where we trained a VGAN on
data augmented by SMOTE. To illustrate the similarity between the gener-
ated data and the original data, the Frechet inception distance (FID), and
T-SNE plots are shown.

Figure 1: Flowchart of the different methods explored to balance the data.

Our baseline experiment consisted of running the SGD and RF models on
the original data, without feature selection and balancing.
We apply a cross-validation setup prone to overoptimism where exact or
similar replicas of a given pattern exist in both the training and test sets
[Fergus et al., 2013]. In our case the entire data set is oversampled first
and then a stratified random split is applied to split the data into a train,
validation and test sets.
We designed four different cases to test our data balancing. In case 1, the

FFI Fordonsstrategisk Forskning och Innovation — www.vinnova.se/ffi

www.vinnova.se/ffi


12

oversampling is run on the whole data set, before we divide it into train,
test and validation sets. In case 2, we divide the data into train, test and
validation sets first, and run the oversampling only on the train set. In cases
3 and 4, we perform a feature selection algorithm before splitting the data
into train, test and validation sets. In case 3 we use Wilcoxon, and in case
4 PCA. In both case 3 and 4, the balancing algorithms are only run on the
training data, similar to case 2. Figure 1 shows a summary of the different
methods.

Model Evaluation and Comparison

Validation is an important phase in analysing the performance of the model.
To explain the proper usage of cross validation, we have further compared
the results from cross validation before and after oversampling.

Figure 2: AUC Plot: (left) Case-1, (right) Case-2.

In Figure 2 we show that for case 1 the AUC values in all oversampling
methods are higher than in case 2. We take the fact that we also oversampled
the test set in case 1 to be the reason for this. In case 2, we only oversampled
the training set, and not the test sets. We conclude from the slight difference
in AUC values between the train and test sets that the oversampling methods
do not suffer from overfitting effects.
Table 1 gives the results of the SGD and RF classifiers in case 1 and case
2. From the table, we see that the performance of case 1 is better than
the performance of case 2. The table shows that for case 2, for the SGD
classifier, the GAN models perform better on average than the baseline and
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Case-1 Case-2

Pre Rec F1 AUC±SD Pre Rec F1 AUC±SD

S
G

D

Baseline 0.79 0.54 0.61 0.51±0.03 0.77 0.56 0.64 0.52±0.02

ROS 0.78 0.70 0.74 0.52±0.02 0.76 0.71 0.72 0.53±0.01

SMOTE 0.79 0.47 0.54 0.52±0.02 0.75 0.52 0.61 0.52±0.01

VGAN 0.82 0.83 0.82 0.75±0.01 0.81 0.75 0.76 0.64±0.02

WGAN 0.86 0.88 0.87 0.76±0.011 0.83 0.76 0.77 0.62±0.01

CGAN 0.82 0.84 0.84 0.75±0 0.81 0.77 0.79 0.66±0

BEGAN 0.81 0.82 0.82 0.74±0.01 0.84 0.72 0.73 0.68±0.01

SMT-VGAN 0.80 0.81 0.81 0.75±0.04 0.82 0.75 0.74 0.64±0.01

R
F Baseline 0.94 0.93 0.93 0.93±0.03 0.93 0.93 0.93 0.94±0.02

ROS 0.95 0.94 0.94 0.94±0.01 0.94 0.93 0.94 0.94±0.01

SMOTE 0.96 0.94 0.95 0.94±0.02 0.94 0.94 0.94 0.94±0.01

VGAN 0.95 0.94 0.94 0.96±0.02 0.95 0.92 0.95 0.93±0.01

WGAN 0.94 0.96 0.95 0.96±0.01 0.94 0.93 0.93 0.93±0.015

CGAN 0.95 0.94 0.94 0.96±0 0.96 0.94 0.95 0.92±0.02

BEGAN 0.96 0.95 0.95 0.95±0.011 0.94 0.94 0.94 0.93±0.01

SMT-VGAN 0.95 0.94 0.94 0.96±0.01 0.95 0.95 0.95 0.93±0.04

Table 1: Mean ranking of oversampling methods using case 1 and case 2

the other oversampling methods, with CGAN and BEGAN performing best.
The reason for ROS and SMOTE not being able to generalise is intuitive:
ROS creates exact replicas of existing data, and SMOTE creates synthetic
examples by inflating the clusters defined by a k-means algorithm. This
might reduce the data variability to existing training patterns, but leads
to decreased generalisation. Using the RF classifier, this difference is less
obvious, but we still see a stable performance from the GAN models.
Table 2 shows the results of the SGD and RF classifiers on data where the
number of features was reduced using Wilcoxon and PCA respectively. For
case 3, the results of baseline system are better than the other oversampling
methods and for case 4. Eventhough there is a slight improvement using
CGAN, it is not enough to comclude this is the best model. Overall there
is an evident decrease in model interpretability using the feature selection
methods.
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Case-3 Case-4

Pre Rec F1 AUC±SD Pre Rec F1 AUC±SD

S
G

D

Baseline 0.98 0.84 0.85 0.62±0.01 0.88 0.87 0.84 0.51±0.01

Wilcox/PCA 0.77 0.82 0.75 0.51±0.01 0.89 0.86 0.85 0.50±0

ROS 0.78 0.81 0.88 0.53±0.02 0.93 0.90 0.90 0.51±0.01

SMOTE 0.79 0.79 0.86 0.55±0 0.91 0.92 0.91 0.5±0.02

VGAN 0.79 0.81 0.85 0.53±0.01 0.92 0.89 0.90 0.51±0.01

WGAN 0.78 0.81 0.84 0.55±0.01 0.91 0.88 0.89 0.51±0.02

CGAN 0.77 0.81 0.86 0.54±0.02 0.92 0.87 0.90 0.53±0.02

BEGAN 0.78 0.85 0.87 0.52±0.02 0.91 0.88 0.90 0.51±0.01

S-VGAN 0.78 0.84 089 0.54±0.02 0.90 0.89 0.91 0.51±0.01

R
F Baseline 0.94 0.92 0.93 0.94±0.01 0.88 0.87 0.84 0.91±0.02

Wilcox/PCA 0.96 0.93 0.93 0.94±0.01 0.89 0.86 0.85 0.92±0.01

ROS 0.95 0.94 0.95 0.9±0.01 0.93 0.90 0.90 0.94±0.01

SMOTE 0.95 0.95 0.94 0.94±0 0.91 0.92 0.91 0.93±0.02

VGAN 0.96 0.93 0.93 0.93±0 0.92 0.87 0.9 0.93±0.011

WGAN 0.95 0.93 0.93 0.93±0.01 0.91 0.89 0.89 0.93±0.01

CGAN 0.94 0.92 0.92 0.93±0.01 0.91 0.89 0.89 0.93±0.01

BEGAN 0.95 0.94 0.94 0.93±0 0.92 0.88 0.9 0.93±0

S-VGAN 0.95 0.93 0.94 0.94±0 0.9 0.89 0.91 0.91±0.01

Table 2: Mean ranking of oversampling, cases 3 and 4.

Visualisation of Generated Samples using t-SNE Plots

To visualise the data generated from GANs, a t-SNE plot (Figure 3) was
generated for each model. The 5000 samples of healthy data are represented
by the colour cyan, 5000 samples of unhealthy data are shown in green and
the generated unhealthy samples are represented by a light green colour.
In Figure 3 (a) and (c), VGAN and CGAN have slightly learnt the upper
mode but the majority of the resampled minority data produced by these
models appears to have lie in same region, with limited diversity. In Figure 3
(b) and (d) both WGAN and BEGAN have learnt the upper mode of the
minority data better than the WGAN and BEGAN have.
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Figure 3: T-distributed Stochastic Neighbor Embedding plots: (a) VGAN (b)
WGAN (c) CGAN (d) BEGAN (e) SMOTE+VGAN

FID Case-1 Case-2 Case-3 Case-4

VGAN 1059.6 1079.7 1107.7 1126.9

WGAN 1061.7 1062.3 1110.4 1136.2

CGAN 1060.3 1063.1 1121.2 1028.4

BEGAN 1064.1 1061.1 1114.9 1157.4

S-VGAN 1058.6 1078.3 1108.1 1197.9

Table 3: Frechet Inception Distance Measure

Unsupervised Evaluation of Generated Samples Using the Frechet
Inception Distance Measure

Table 3 represents the Frechet Inception Distance (FID) measure where we
compare the difference between 5000 generated samples from all oversampling
methods with 5000 original minority samples used for training the GANs. The
FID is a metric for evaluating the quality of generated data and specifically
developed to evaluate the performance of GANs [Heusel et al., 2017]. For this
experiment the FID measure has been used to calculate the distance between
the original data and regenerated data from the different GANs. The aim is
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to have lowest FID score indicating the generated data is closest to original
data. In Table 3 the difference in FID scores between case 1 and case 2 two
is least even though the sample range used to train the GAN in case 1 was
higher. When we compare all methods, the FID scores in case 3 and 4 seems
to have higher value. This difference may be due to lack of diversity but also
to loss of information after the feature selection method were applied in these
two cases. Considering all the metrics mentioned, in case 2 we were able to
resolve the class imbalance by oversampling the method. This can also be
observed from the table which gives a lower FID scores in case 1 than in
cases 3 or 4. Finally, WGAN and BEGAN were able to learn the underlying
distribution of original minority data better than the other oversampling
methods. Also, the computational cost of training a BEGAN is less than the
costs of the other GANs.
Class imbalanced learning on complex data has always been a challenge for
data mining and machine learning research. This research presents deep
neural networks for solving the imbalance problems, and also provides insights
on how to deal with a skewed data distribution by using different variants of
GANs. An insight on the correct usage of cross validation when oversampling
methods are used is also provided. We have also implemented traditional
oversampling methods such as random oversampling and SMOTE to gain
understanding about the oversampling methods in this context.

6.2.2 Clustering for detecting the high risk vehicles

This section describes our intention to analyze the trucks based on two
features such as Horse Power, which relates to the configuration of the
trucks, and Mileage that shows the vehicle usage logged over time. These
two features are important since they can bring out the knowledge of what
style of usage pattern w.r.t the millage in different types of engines can have
more possibilities to fail, however previous investigations also suggested that
these two features have shown a possible relations to the failure ratio. In this
experiment we concentrated on a component connected to power train.
To find out such relations, we have implemented the clustering algorithm on
the trucks population with three different engine types including; A, B and C
connected to horse powers.
In order to achieve the goal mentioned above, we have designed three different
experiments as follows:

• Engine type A with 10 bins discretisation on the mileage data,
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Failure Ratio and Sample
Size in Cluster 1

Failure Ratio and Sample
Size in Cluster 2

Engine Type
Failure
Ratio

Cluster Size
(sample size)

Failure
Ratio

Cluster Size
(sample size)

A lower 90.1% higher 9.9%
B similar 82.6% similar 17.4$
C higher 73.7 lower 26.3

Table 4: Clustering results with 10 bins discretisation: Failure ratio, which is
connected to power train, in different engine types.

• Engine type B with 10 bins discretisation on the mileage data,

• Engine type C with 10 bins discretisation on the mileage data.

Data (related to mileage which are logged over time) collected from heavy
duty trucks are normalized and discretised into 10 bins, this decision has been
made under the hypothesis that discretisation supports the algorithm for
better clustering the trucks. Then, we have implemented K-means [Wagstaff
et al., 2001] clustering algorithm on the data, in which the algorithm is set
to produce two clusters as the result. We kept this setting for all three
experiments.
Table 4 shows the results of the K-means algorithm, which are conducted
on the data –with 10 bins–. It can be observed that failures ratio in the B
engine type in both clusters are similar (with a very low difference by 0.007),
however these two clusters contain different population of the vehicles such
as 82.6% and 17.4% in cluster 1 and 2, respectively. We have obtained lower
failure rates on the vehicles with A type engine with a highly imbalanced
vehicle population in cluster 1 with 90% and cluster 2 by 0.99% shown in
Figure 4. The results in terms of C type engine show rather more balanced
population distribution in the clusters, having a bit more failure proportion
in cluster 1, and lower in the second cluster w.r.t the other engine types.
All these results and figures illustrate that vehicles in cluster 1 with C and A
engine types have the highest and lowest failure rates during their operation
life. This also indicates those vehicles –B engine type in the second cluster
and C engine type in the first cluster– have high risk usage pattern, which
led to have higher failure rates in that specific component.
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Figure 4: The result of clustering in low engine size vehicles.

6.2.3 Clustering vehicles dynamically based on logged vehicle data

Taking into consideration the above clustering implementation, which have
done based on only two features Millage and Engine size, in this stage of the
experiment we intend to use all LVD data, however this data includes many
uninformative and redundant features that should be eliminated from the data
set. Thus, the main focus of this experiment is to select the most informative
features using a supervised classification method and cluster the readouts
into a set of representative states that capture different aspects of lifelong
history of the vehicle. To do so, we first need to estimate feature importance
on readouts. It is known that each readout consists of a large number of
attributes, which could affect the quality of the clustering process. One
way to tackle this issue is to identify and remove unimportant or unrelated
features. This step is essential since the clustering algorithm considers the
same weight for all the features. Therefore, it is a common practice to apply
feature selection prior to clustering in case of having a high dimensional
feature set [Dash and Liu, 2000]. We know that LVD features have different
scales and types, so it is important to normalize the data before clustering.
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There are different approaches available for estimating feature importance.
Since the problem is a two-class classification task (i.e. healthy or unhealhty),
we decided to use a supervised method to assign relative importance scores
to the features and filter them based on a threshold applied on the number of
features. Then, we splitted the data into train, development, and test sets. A
random forest classifier is employed on the training set to calculate feature
importance. Table 5 represents the fifteen most important features along
with their relative importance scores. The scores are scaled up for better
readability.

ID Feature name Score
1 PMAIRDRYERCARTRIDGERESETCALEND 12.212
2 TOTAL ENGINE TIME 9.008
3 GEARBOX MOVEMENT GEAR1R NEUTRA 8.485
4 ENGINE SPEED TORQUE H Y INDEX 2 8.093
5 AGE YEARS 7.223
6 GEARBOX MOVEMENT GEAR23 GEAR2 7.108
7 GEARBOX MOVEMENT RANGE HIGH 7.035
8 AGE MONTHS 7.002
9 MAIN LOG KEY ON TIME 6.784
10 GEARBOX MOVEMENT GEAR1R GEAR1 6.722
11 GEARBOX MOVEMENT RANGE LOW 6.703
12 GEAR LEVER AUTOMATIC TIME 6.449
13 ENGINE SPEED TORQUE H Y INDEX 15 6.283
14 OBDCOND 6.267
15 PMAIRDRYERCARTRIDGERESETENGINE 6.21

Table 5: List of fifteen most important features and their relative importance
scores.

Using the scores calculated by random forest classifier, we filtered the number
of attributes to fifty most important features. This number is selected
empirically since there is a drop on the importance scores close to this number.
The idea behind applying feature selection is to reduce the dimension of the
data by identifying and removing unrelated features in order to improve
the clustering performance. Subsequently, we applied k-means clustering
technique on LVD readouts based to the selected features. Figure 5 illustrates
the distribution of the clusters along with the five most important features.
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Figure 5: A plot displaying the distribution of cluster members over five most
important features.

One important parameter of k-means algorithm is the number of clusters. In
this experiment, it is set to a predefined fixed value. The effect of changing
this parameter on the model efficiency is further investigated in Section 6.3.2.
To evaluate the performance of the clustering results, we need to inspect how
it affects the overall performance of a classifier on the final task of failure
prediction. To this end, in the next section (Section 6.3.1), we model vehicle
behaviour by considering each cluster as a Markov process i.e. members of
each cluster represent a state. The clustering is applied on the train set. Then
we query closest cluster centroid to each readout in the test (or dev) set to
map it to a respective Markov state. It is shown that both feature selection
and clustering are beneficial for doing the final task of failure prediction.
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6.3 WP2: Modeling components health status using
Markov process

6.3.1 Predicting turbocharger failures using Markov process

The advancements of the telematics and connectivity solutions have provided
new opportunities for the field of vehicle predictive maintenance. The number
of the sensors installed on a vehicle is increasing over the time and manufac-
tures are looking for new ways to improve up-time of their fleet while at the
same time reduce the costs related to unexpected breakdown. The nature
of the aggregated data from vehicles is sequential and it is interesting to
investigate existing methods for modeling fully observable state sequences
to detect common patterns of failure. To do so, in this section, we consider
stochastic Markov process to represent various aspects of truck histories. In
this representation, we are interested to automatically create some states
that could help to signify similarities between readouts from different trucks
during their lifetime. To do so, we apply k-means clustering on the logged
vehicle data (LVD) (see section 6.2.3). Then, each cluster is used to indicate
a Markovian state. Since the clustering process is applied on the data logged
and captured from different vehicles, the state of a vehicle could change from
one cluster to another during the time.
The sequence produced by each truck is then aligned with repairs information
of the truck to further investigate the hidden patterns of failures. We employed
the prediction horizon technique introduced in [Prytz et al., 2015] to label
the readouts. The prediction horizon indicates a period of time (time-window)
ahead of a failure that a replacement recommendation should be made for
the part. Based on the prediction horizon parameter, each readout is labeled
as zero if that part had no repair in the following time span, otherwise, it is
set as one to imply that a replacement for that part is recommended. More
formally, each time-window/time span is assigned a binary label according to
the following equation.

Lt =

{
1 if failure in [t,t+τ)

0 if no failure in [t,t+τ)
(1)

, where t refers to a time window –e.g., one week, two weeks, one months.–
that has a highest impact on failures in trucks.
In this experiment, we narrow our attention down to a single component
related to turbocharger failures. A turbocharger is a vital and expensive part
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of the vehicle, where its’ failure usually leads to a total breakdown of the
vehicle. Besides, most of the time this part fails unexpectedly and on rare
occasions. This fact adds more complexity to the problem.
Another complexity of the problem is the imbalanced classes issue. Considering
the entire LVD readouts, only a very small portion of the readouts have a
repair associated with them. This indicates that the number of vehicles,
which have failures associated by 1 as the target value, are very low compared
to the number of healthy vehicles labeled by 0. Thus, in this experiment, to
overcome this issue, we focused on a group of vehicles that have had at least
one recorded repair in our data set. This somehow decreases the imbalancy
of the classes, however, the challenge remains to a high degree.
The Markov model enables us to assign a state to every readout and further
convert the history of a truck into a sequence of states. It is also possible
to study the relations between the produced sequences of hidden states and
variables of interest like previous repairs, which are known to the model.
We conducted an experiment to analyze the efficiency of the feature selection
and modeling process for predicting truck failures. In this experiment, we
exploit random forest classifier to compare four possible settings regarding
whether we apply feature selection and Markov modeling on the data or not.
Both steps prove to be beneficial for improving the overall performance of
the failure prediction task.
Figure 6 displays the results produced by random forest classifier on four
parameter settings with four different prediction horizon values. In two
settings (A and B) we apply feature selection, while for the rest we consider
all available features. On the other hand, the Markov model has exploited
only on A and C. It is worth noting that in A and C, due to the clustering,
the number of features has been reduced to one i.e. the associated Markov
state to the readout.
As you can see in Figure 6, setting A (that encompass both feature selection
and Markov modeling) outperforms other settings. The feature selection
process proves to be efficient since the application of clustering on the original
features (setting C) improved the results compared to other approached.
Each plot in Figure 6 represents results for a specific prediction horizon with
different values for the number of clusters. It could be seen that conclusions
drawn from the experiments are valid for the most of the values of prediction
horizon and number of clusters.

FFI Fordonsstrategisk Forskning och Innovation — www.vinnova.se/ffi

www.vinnova.se/ffi


23

Figure 6: Classification results on four possible settings concerning with
application of feature selection and Markov model.

6.3.2 Optimizing number of states

As discussed in Section 6.3.1, building a Markov model based on the clustering
of LVD features enhanced the performance of failure prediction in this context.
Though, we did not elaborate on an important parameter of the model i.e.
optimized number of states (clusters). Perceptibly, using a predefined value
for this parameter is not efficient and we need to adjust it based on the data.
In this section, we conduct an experiment to estimate an optimal range of
values for the number of states. Then, we describe the history of each truck
through a sequence of states extracted from the optimized Markov model.
We refer to this sequence as the trajectory of the truck. Then we create a
supervised hidden Markov model (HMM) classifier to model the failures of the
turbocharger. Subsequently, the prediction result of this model is compared
with a random forest classifier applied on the original LVD features.
Since we are modeling several different trucks with the same hidden Markov
model, the implementation should be able to compute the emission and
transition probabilities from not only one sequence of observations but also
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many parallel sequences. It is also important to apply the Viterbi algorithm
to the trajectory of each truck separately to estimate the output labels. Due
to the fact that existing implementations did not fill the requirements of
our problem (i.e. accepting multiple parallel input sequences), we applied a
customized HMM.
Figure 7 shows the effect of changing the number of Markov states on the
performance of the model for predicting the failures. The vertical axis displays
the AUC scores gained by HMM classifier, while the horizontal axis represents
the number of states (clusters). The number of clusters changes from 1 to
2000, and for each value, we run the entire system (i.e. model generation
using clustering and classification using HMM) three times to compute mean
and standard deviation of the area under the ROC curve (AUC).
The blue points in the plot display the mean values, while the standard
deviations are illustrated using a vertical green line crossing each point. This
experiment is conducted using train and development set and the prediction
horizon is set to 6 time-steps.

Figure 7: The plot shows how AUC score of HMM classifier changes by
altering number of Markov states

As you can see in Figure 7, performance of the system drops as we increase
the number of clusters to more than 500. The best performance achieved by
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110 clusters. Considering this value as the optimized number of states, we
conducted another experiment this time on the test dataset and compared the
HMM classifier with two random forest classifiers. Note that HMM is applied
on the trajectories produced from sequences of readouts, whereas random
forest is applied on a single readouts. Table 6 presents the final results.

Classification method Feature selection AUC
Random Forest No 0.5233
Random Forest Yes 0.5660
Hidden Markov Model Yes 0.5847

Table 6: Results of applying random forest and HMM classifiers on the test
data.

In Table 6, the feature selection column indicates whether the number of
attributes is reduced to the set of selected features or the entire LVD feature
set is used. The AUC score column depicted in Table 6, shows the final
performance of each approach, which express the HMM classifier outperforms
other approaches.
Although we were able to improve the performance of the final system by
processing the sequence of trajectories instead of single readouts, the scores
are still low. There might be many reasons contributing to this fact. For
instance, the difficulty of the problem and having a highly imbalanced data
set. The weakness of the Hidden Markov Model to memorize the complex
patterns of failures could also be the sourced of the problem. This comes
from the fact that HMM applies the Markov assumption which considers only
previous state and ignores the rest of the sequence of events that precede it
to compute the conditional probability of the current state. Since we produce
the trajectories based on clustering, in many cases, the state of a truck stays
in the same state for a couple of time steps before changing to another state.
Combining this fact with the Markov assumption, the system is unable to do
deep inference over the trajectories.
Another important factor is the labeling process. As mentioned earlier, the
LVD readouts are not annotated originally, so that we assigned zero and one
labels based on the prediction horizon technique. Hence, the final AUC score
of the system is highly sensitive to how we assign the labels.
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6.4 WP3: Learning partial observable models using
neural networks

This section in an attempt to ease the assumption of observability of all
parameters that influences the state of the trucks by considering only partially
observed data in the form of sequence of data. Section 6.4.1 shows the use
of Long Short-Term Memory (LSTM) type of recurrent neural networks to
predict whether a failure will occur within next 90 days interval. Section 6.4.2
adopts an ensemble of recurrent neural networks in order to predict time to
next failure. In these networks, a specific type of ensemble learning, known as
Stacked Ensemble consisting of two layers of models, is used. Finally, section
6.4.3 utilises 2D histograms of engine-speed and torque which is formed by
counting the occurrence of combinations of these two components. This 2D
histograms are then fed to recurrent neural networks for the task of failure
prediction.

6.4.1 Recurrent Neural Networks for Fault Detection using LVD

As mentioned above, many researchers have worked on predictive maintenance
in the last decade, and some of their works are nowadays implemented in
practical settings. Random Forest is one of the powerful methods due to its
ability to handle highly dimensional and highly imbalanced data.
In addition, the method – in overall – is one of the easiest algorithm to use,
since it does not require the data science expertise to set the parameters.
However, Random Forest assumes that each data sample is independent, which
is generally not true in equipment monitoring applications, since equipment
wears out over time. Failures on some components, such as air compressor,
are caused by many different factors and usually develop gradually, since the
current state of the vehicle is influenced by the prior usage. In this experiment,
the original available data is collected as a time sequence, and different periods
in this sequence are highly correlated. Therefore, it is desirable to investigate
models that can describe the dynamic behaviours of the system and capture
temporal relationship between samples. One example of such methods is
recurrent neural networks, and in particular LSTM.
In this section, we introduce a prediction model based on LSTM to detect
whether an air compressor failure will occur within the next 90 days. We used
two datasets from Volvo authorized workshops, Logged Vehicles Data (LVD)
and Volvo Service Records (VSR). The LVD dataset contains aggregated
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information from various sensors on-board a truck, continuously collected
during normal operation. It is downloaded when the truck is in the workshop.
This actually poses an interesting challenge, since the length of the interval
between two visits (to the workshop) is irregular. Records in VSR dataset
are also collected when a truck goes to the workshop. They contain detailed
information about the replaced parts and maintenance operations that were
performed during the visit.
Subsets of both LVD and VSR are separately used in this paper, we called
them reading table and repair table, respectively. In the reading table, there are
more than 160,000 records from about 1,000 Volvo heavy duty trucks collected
over 2 years. The records in this table contain information about vehicle
configurations and sensor readings. Attributes which reflect the amount of
wear, such as mileage, battery mode and hydraulic oil level, are available.
Additionally, this data contains information on the working environment of
each vehicle. On the other hand, since we are focusing on the air compressor,
a component that does not fail very often, there are less than 200 entries in
the repair table. Each of these entries describes when and which truck has
been repaired. Clearly, the vast majority of trucks from the reading table
never had compressor issues.
If a truck does not have any record in the repair table, we consider it to be a
healthy truck, and all its records in the reading table will be categorized as
negative class (i.e., not requiring a maintenance intervention). On the other
hand, any truck that has a repair record is categorized as unhealhty truck.
For an unhealthy truck, a subset part of its readout records is categorized
as positive class. Clearly, for the classifier to be useful in the predictive
maintenance setting, it should recommend maintenance intervention only in
close vicinity to the failure time. Therefore, we defined a specific condition
for positive class, namely, if the record is collected less than 90 days before
air compressor repair. In this way, each unhealhty vehicle has a maximum
of 90 unhealhty records, and all the other records from the same truck are
labeled as negative class. This prediction horizon of 90 days is determined by
both domain experts and previous study in [Prytz et al., 2015]. It is based on
the fact that air compressor issues require time to develop and it is a gradual
process rather than a sudden incident.
The results from both Random Forest and LSTM predictions are shown
in Table 7, which clearly indicate that Random Forest outperforms LSTM
models taking into consideration the accuracy and the AUC scores. If that
were the only criterion, the preference for this model would be very natural,
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Table 7: Results from RF and LSTM in different measurements

Random Forest L(64, 32)D(10, 2)

TN 0.92±0.15 0.80±0.13

FP 0.08±0.15 0.20±0.13

FN 0.27±0.34 0.37±0.19

TP 0.73±0.34 0.63±0.19

Accuracy 0.86±0.22 0.74±0.06

Precision 0.83±0.31 0.62±0.07

Recall 0.73±0.34 0.64±0.17

F1-Score 0.78±0.32 0.62±0.09

AUC-Score 0.91±0.17 0.82±0.09

(a) LSTM for unhealhty truck. (b) Random Forest for healthy truck.

Figure 8: Example result visualization.

given also benefits in terms of simplicity and much shorter training time.
However, the stability of the results has not been considered.
In this context, we realize that it is interesting to see how our LSTM model
gives prediction over time. Therefore, we visualize the sequence of predictions
for a single truck in a form shown in Figure 8a. The X-axis corresponds to
time and demonstrates the window size of that learning setup. The Y-axis is
the outcome of the softmax function: red curve means the probability that
the LSTM predicts the data record as an unhealhty record, while the black
curve means the same kind of probability for the healthy one. The blue area
corresponds to the ground truth and shows the portion and the position of
the unhealhty period. The repair always happens at the end (right-hand side)
of the blue area. The records in the white belong to the healthy (negative)
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Figure 9: Example results from LSTM.

Figure 10: Example results from Random Forest.

class. The corresponding example for Random Forest is shown in Figure 20b,
and more examples are presented in Figures 9 and 10.
From these figures, we initially found that LSTM can offer a stable prediction
over a certain amount of time without switching. Before a switch happens,
there is a distinct tendency that it is increasingly likely to categorize data to
another class. Once it reaches the prediction boundary and gives a prediction
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on another category, it does not quickly change again. Those features meet
the requirement in industry; Companies do not favor a model that provides
one prediction at first and switches to another prediction the next day, and
they need time to arrange the resources of a workshop and schedule the
repair. The proposed LSTM model is able to give stable, consistent prediction
overtime. Experiment shows that random forest slightly outperforms LSTM
in terms of accuracy and AUC score. However, by analysing the predictions
given at different time, we demonstrated that this stability is essential for
making repair decisions, and for significant improvement on vehicle uptime.

6.4.2 Stacked Ensemble of Recurrent Neural Networks

Model Stacking

Stacking in its original form is a two-layer architecture. In Wolpert termin-
ology [Wolpert, 1992], first layer data and models are referred as layer 0
data and models, respectively, and the second layer cross-validated data and
models are referred as layer-1 data and models, respectively. Here, layer-0
models are called ”base models” and layer-1 model is called ”meta model”.
Layer-0 data and layer-1 data are called ”original data” and ”meta data”,
respectively. Stacking is categorized as parallel architecture since base models
can be trained independently from each other. Figure 11 presents the basic
architecture of Stacking.

Figure 11: Two-layer stacking architecture.

One important consideration in stacking is to train the models in a way not to
leak information. The risk of information leaking originates from the fact that
the meta model consumes predictions of the base models as features [Güneş
et al., 2017]. The correct way to implement stacking, to prevent information

FFI Fordonsstrategisk Forskning och Innovation — www.vinnova.se/ffi

www.vinnova.se/ffi


31

leaking, is through k-fold cross validation scheme. The process is shown in
Algorithm 1. In other words, the main idea is that each base model is trained
on k-1 folds and make prediction on the remaining untrained fold.
This way, the models make predictions on parts of the data which label
information were not provided for the models beforehand. It means that the
labels are only used for the training of the meta model.

Algorithm 1 Stacked ensemble algorithm
Input:

Xtrain . Training data
nfolds . Number of folds
nmodels . number of base models
base models . Set of base learning models
meta model . Second layer model

Output:
base models . Trained base learning models
meta model . Trained second layer model

1: Split Xtrain into nfolds folds
2: Xmeta = Create empty array of size nsamples × nmodels

3: for model in base models do
4: for k in nfolds do
5: train model on all folds as input excluding kth fold
6: make prediction on kth fold and add to the corresponding rows

and column in Xmeta

7: end for
8: end for
9: train meta model on Xmeta

10: return base models,meta model

Note that for each base model, nfolds of them are trained. For the test data,
the saved models for each base model make predictions and then averaged
together. This process will be done for all base models to generate Xmeta

matrix for the meta model. Finally, the meta model will make the final test
prediction.
However, because of time series nature of the data, we cannot simply use the
standard k-fold cross validation. To tackle this problem we adopt a time-based
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cross validation in which the data folds that a model is trained on, always
have lower indexes than the data folds chosen for making predictions. The
time-based cross validation is depicted in Figure 12.

Indexes

Fold 0

Fold 1

Fold 2

Fold 3

0 n-1n/5 2n/5 3n/5 4n/5

Figure 12: Time-based cross validation

Notice that data with index in range [0,n/5] cannot be used in training the
meta model since it can cause overfitting.
In this study, we have considered — feature subsets, past dependency res-
olution, and modeling structure to create diverse set of models and learn
different representation of the data,

Data labeling discussion

One important challenge is to determine how to label the LVD readouts.
There are two main approaches for tackling this problem — sliding-box and
time to next event (TTE) approach.
In sliding-box model the idea is to define whether a failure is happened within
a predefined time interval from the timestep t using Equation 1.
There are two main issues with this approach. The first issue is the need for
tuning the time interval (τ) size which can be very difficult to choose. The
smallest possible interval-size is two (cannot be one) since we need to predict
failure at least one step before a failure happens. Choosing the interval-size of
two meaning having the finest resolution; however, the main drawback is that
since failures are rare in comparison to non-failures, it makes the problem
so imbalanced. On the other hand, the larger the interval-size the lower the
resolution. The second issue which can be more serious is the sudden jumps
from zero to one (non-failure to failure), a specific amount of time ahead of
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failure (depending of interval-size). Mostly, the degradation of components are
gradual as in-operation time of a vehicle increases; contradictory, by making
the labels binary we attribute this gradual degradation to sudden jumps in
the labels. In other words, between two consecutive logged measurements
there might not be as much difference as it is in their labels (zero and one).
This problem can make machine learning models confused and make it hard
to train.
The second approach to labeling the data is Time to Event (TTE) or Remain-
ing Useful Life (RUL) approach. The idea is that instead of assigning binary
labels, assign time to the next event to each data as the label. Doing so has
two main advantages. First, there is no need for tuning hyper-parameters
such as interval-size in sliding-box method. The second advantage is that
this labeling is more compatible with the gradual degradation assumption
of components and therefore make it easier for models to be trained on.
Moreover, if binary prediction of failure is of interest, then after predicting
TTE, it can be converted to binary by thresholding. According to the above
reasoning, we choose to stick to TTE labeling method.
There is yet another problem arises in both of these labeling methods which is
the censoring problem. Let’s consider the TTE labeling scheme. The problem
is that readout logged after the last failure cannot be assigned labels. That
is because in the first place we do not know whether there will be a failure
or not, and even if there will be, we do not know when. There are some
researches on how to make use of these censored part of the data [Allik et al.,
2016b, Allik et al., 2016a]. However, we decided to neglect these censored
part for the sake of simplicity. Both TTE labeling and censored data concept
are shown in Figure 13.

Covariate shift detection

A very important problem in many real world datasets especially for datasets
with time series nature, is the problem of covariate shift. Covariate shift
happens when the distribution of features (input variables) changes between
train and test datasets or more generally between different partitioning of
dataset. Formally, covariate shift arises when,

Ptrain(X) 6= Ptest(X) and Ptrain(Y |X) = PtestY |X (2)

In other words, change in the joint distribution of X, Y originates from
difference in marginal distribution of Xtrain, Xtest.
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Figure 13: Time to Event (TTE) and censored data

This problem is more serious when the features with covariate shift are
considered as important features by the machine learning models. For instance
in tree models if a split on a feature with high covariate shift causes a
large reduction in impurity, that feature will be considered as an important
feature. In the case of neural networks, if weights connected to a high
covarite shift feature are large, and if possibly large signal carried through the
pathway of that feature towards the end of the network, makes that feature
influential. Having influential features with high covariate shift will result in
poor generalization.
For this study we adopt a method which has been shown to be practical
for many datasets. The idea behind this method is to train a classifier to
distinguish between train and test. Algorithm 2 describes the steps of the
method.
It is worth mentioning that covariate shift is a subclass of dataset shift.
More generally, in additional to marginal distribution shift of features, the
conditional distribution of target given features (P (Y |X)) can be changed for
different splits of dataset. Since Algorithm 2 does not consider actual target
of the data into account, it only can detect covariate shift.
In Algorithm 2, a LightGBM [Ke et al., 2017] model is used as the classifier.
Now, we need to find a proper threshold (tr) to compare to Lightgbm’s
AUC for selecting features. Different values of tr result in different subset
of features. For each subset of features (obtained for a specific tr), a LSTM
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Algorithm 2 Covariate shift detection algorithm
Input:

X . Entire data
tr . Threshold for shift detection

Output:
cs features . Set of features detected as high shift

1: Split X into Xtrain and Xtest

2: Add a label column to Xtrain and Xtest and assign 1 to Xtrain and 0 to
Xtest

3: Concatenate Xtrain and Xtest and shuffle to create Xconcat

4: Split Xconcat to create a new Xtrain and Xtest

5: for col in X.columns do
6: Xcol

train = Xtrain[col]
7: Xcol

test = Xtest[col]
8: Train a classifier on Xcol

train

9: test auc = Calculate auc on Xcol
test

10: if test auc > tr then
11: Add col to cs features
12: end if
13: end for
14: return cs features

with the Mean Absolute Error(MAE) cost function is trained. Finally, the
obtained MAEs for different values of tr are compared to get the best tr,
and consequently features subset. The result of this experiment is shown in
Figure 14, which shows that choosing threshold to be 0.8 leads to the best
MAE. Number of features associated with this threshold is 355.

Experimental Results

In this section the result of applying the stacked ensemble will be reported
from both classification and regression perspective. Since the labeling of the
data provided with TTE is in regression format, first, the result of regression
is reported. Then by applying threshold on predictions, they will be converted
and reported as the classification results. For comparison, the result of stacked
ensemble will be compared to simple ensemble aggregation such as average
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Figure 14: LSTM error results for choosing threshold in feature selection in
Algorithm 2.

and median of all base models predictions. Moreover, ensemble result will be
compared to the best individual base model result.
Starting from regression result, Table 8 shows the MAE of different models
including ensembles and best individual model. The figures indicate that
both mean and median aggregation of the result of base models on test data
beat the best individual model. However, the result of Stacked ensemble
outperforms the mean and median ensembles.

Table 8: Model comparison

Model MAE

Best individual model 139.32
Mean of all base models 125.63

Median of all base models 124.26
Stacked ensemble 105.79

A sign of diversity in stacking is that the base models’ predictions have low
correlation with respect to each other. Table 9 depicts some statistics about
correlation of the base models.
The average correlation of 0.56 is a good indicator of diversity between base
models. Note that in the context of stacking 0.75 correlation (the max
correlation) is not still a high correlation given that the models are trying to
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Table 9: Correlation statistics of base models

Mean correlation of all models 0.56
Max correlation 0.75
Min correlation 0.42

predict the same target.
Figure 15 and 16 show the prediction of stacked ensemble predictions and
best model prediction against target values, respectively. In Figure 17 the
two previous figures are plotted together for better comparison of stacked
ensemble predictions and best model predictions.
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Figure 15: Comparing stacked ensemble results to the target values
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Figure 16: Comparing best model results to the target values
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Figure 17: Stacked ensemble predictions, best model predictions, and target
value comparison.

As can be seen in Figure 16 and 17, predictions of the best model drop
too early in comparison to target TTE. Also, it can be seen that there are
more unnecessary fluctuations in its predictions. On the other hand, the
stacked ensemble predictions drop much closer to the target TTE, while the
predictions of the ensemble method are much more stable.
In order to convert the TTE predictions to binary fault classification, the
TTE predictions are compared to a threshold derived from the training part
of the data and then applied to test partition of the data.
Figure 18 illustrates the result of converting TTE to binary fault prediction
using AUC curves for the best base model and stacked-ensemble model. As can
be seen, there is a considerable boost achieved using stacked ensemble method.
It is also noticeable from Figure 17 that since the base model predictions
drops faster relative to target TTE, applying the threshold causes more false
positive in comparison to stacked ensemble predictions. In other words, since
the predictions of stacked ensemble are more aligned with the target TTE,
for the same value of FPR, TPR is higher (elbow of stacked-ensemble).

6.4.3 Recurrent Neural Networks for Fault Detection using 2D
histogram data

Similar to the previous implementation, in this experiment we took the
advantage of Recurrent Neural Network (RNN) aimed to predict the com-
ponents’ failure by exploiting 2D histogram data. Indeed, the objective of
this experiment is to perform a binary classification of healthy and unhealthy
trucks –focusing on steering-pump component–, using truck-data readouts
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Figure 18: AUC curves for comparing stacked-ensemble and best base model

represented as sequences of samples of 2D histogram-data originating from
engine speed and torque.
The data includes the samples, which are captured and logged from heavy
duty trucks over a time-period of two years. One sample is defined as a
histogram, expressing the relation between ‘engine speed’ and ‘engine torque’
signals, with 20 x 20 bins. This in turn defines one sample as 400 features
and their labels. An example of a 2D histogram is shown in Figure 19.
In order to label the data, we have used Equation 1 having in mind 90 days
time windows. We took into account this 90 days to be the interval in which the
symptoms of a forthcoming failure are most likely to be visible, and when the
vehicle usage has the highest impact on a failure. Hence, samples are labeled
to 1 as unhealthy if and only if a repair for the interested component has been
reported, otherwise they are labeled to 0 as healthy vehicles. Consequently,
we defined 90 days as the prediction horizon in this binary classification
problem using RNN to predict the component failures/repairs before they
really happen.
Once the labeling took the place, we have pre-processed the data so that all
the 2D histogram samples grouped into sequences of five time-ordered. As
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Figure 19: Engine speed and torque histogram data

Data Sets
Characteristics

Note
# of Samples
and Sequences

Distribution
of Data

V1=original Samples= 521273 very unbalanced
The biggest data-set

is used

V1=extracted Sequences= 4426 —
Derived from V1 as

sequences of 5 samples

Table 10: The characteristics of the original data and extracted data.

it is represented in Table 10, 521273 histogram samples have been grouped
into sequences, then 4420 sequences are randomly selected to be used for this
experiment.
To conduct the experiment, we partitioned the data into three sets of train,
validation and test including 70%, 20% and 10% of the data, respectively.
Then, we have implemented the RNN using tensorflow1and ConvLSTM2D
Dense objects/layers to train the model. The input layer is set to sequence of
inputs where each sequence consists of 5 samples with 20x20 dimensions. We
have used 2 ConvLSTM2d, 1 Flatten and five Dense layers in this network.

1We took the advantage of tensorflow.keras package using ConvLSTM2D and Dense avail-
able in Python: https://www.tensorflow.org/api_docs/python/tf/keras/layers/

ConvLSTM2D
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More details of the configuration in our network are illustrated in Table 11.

RNN Layers and settings Notes and details

Input-layer input-Shape=5 samples (1 sequence) with 20x20
dimensions)

ConvLSTM2D filters=5, kernel size=(5, 5), padding=same,
return sequences=True, stateful=False, activ-
ation=relu

ConvLSTM2D filters=10, kernel size=(5, 5), dilation rate=[2,
2], padding=same, return sequences=False,
stateful=False, activation=relu

Flatten layer Flattening of previous layer

Dense neurons=400, activation=relu

Dense neurons=400, activation=relu

Dense neurons=200, activation=relu

Dense neurons=200, activation=relu

Dense neurons=20, activation=relu

Output layer neurons=2, activation=softmax

Optimizer Adagrad(lr=0.01)

Loss-function sparse categorical crossentropy

Table 11: Table of best RNN-model configuration

(a) Normalized confusion matrix. (b) ROC-curve.

Figure 20: RNN experimental results.

Figure 20 shows the confusion matrix and ROC curve obtained by the RNN
algorithm. The normalized confusion matrix indicates that our RNN provides
an admissible result, such that the model could correctly predict both healthy
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and unhealthy vehicles almost with similar performances ∼ 73%. It can
be seen that False Positive and False Negative as prediction errors of the
classifier are relatively low in this complex problem by ∼ 27%. In addition,
Receiver Operating Characteristic (ROC) curve, which is depicted in Figure
20b, shows that the classifier with our setting performs well in predicting the
two classes with AUC = 0.77.
All the above figures obtained from RNN implementation highlight that 2D
histogram data offers a valuable knowledge/pattern, so that classifier could
provide prediction with admissible results.

6.5 Results for WP4: Causal discovery using clusters
from observational data

Many methods have been proposed over the years for distinguishing causes
from effects using observational data due to its complexity we progress by
creating powerful heuristics, capable of inferring necessary information present
in real data.
The idea of explicitly considering cluster as latent variables previously pro-
posed by Sgouritsa et. al [Sgouritsa and Scholkopf, 2013]. They used a
kernel method to infer a common cause of a sets of variables by clustering the
variables. However, there is no hint for selecting these variables efficiently
which makes their method computationally expensive. Clusters are a very
typical occurrence that should be taken into account, and exploited, in the
process of identifying causes and effects. In this experiment we show that
inhomogeneities in the data, appearing due to a confounding factors, can
hide existing causal relationship between two variables. We try to resolve
this problem based on structure of discovered causal network that can reduce
ambiguity in the causal structure. We also propose a new method that,
as shown by experiments performed on synthetic and real data, is able to
improve the quality of learned causal structures.
Figure 21 represents the existence of correlation among variables in many
different ways. It is often implicitly assumed that the relationship between
two continuous-valued variables will take some functional form, such that the
value of one variable can be expressed as a (possibly approximate or noisy)
function of the other. However, existence of clusters in the data, while a very
common occurrence, leads to a very different manifestation of the correlation
between variables. We claim that clusters should be addressed explicitly.
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Figure 21: Different kinds of data: (a) linear correlation (b) non-linear
functional correlation (c) correlation with clusters.

Method

The intuition behind our idea lies in the notion that “lumpiness in the data
must have a reason”. This is similar to the principle used in the Information
Geometric Causal Inference (IGCI) class of methods [Janzing and Schlkopf,
2012], where entropy is used to estimate whether an attribute is likely a cause
or an effect. In our case, it corresponds to noticing varying density between
cluster variables has lower entropy than variables with same variance therefore
clusters among larger sets of attributes are considered for calculations.
The proposed method starts by using an existing algorithm for finding an
initial causal structure. For this, we have here used the PC algorithm [Spirtes
et al., 2000][Kalisch and Bhlmann, 2012]. The PC algorithm builds a Markov
equivalence class which contains the underlying causal graph and represents it
by a Completed Partially Directed Acyclic Graph (CPDAG). The calculations
are based on conditional independence tests. In many cases, the graph
produced contains bi-directed edges. Such bi-directed edges are undesirable,
as they imply the existence of a confounding variable.
The next step of the method is to look for clustered data in the subset
of variables constituting such cliques of ambiguous causal direction. The
clustering method used here is a Gaussian Mixture Model (GMM) [Zivkovic,
2004] trained by Expectation Maximization (EM). This is combined with a
test for “homogeneity”, in this case, defined as being similar to a (multivariate)
Gaussian distribution, since it is the distribution (in Euclidean space) which
has the highest entropy for a given variance. However, most tests for Gaussian
distributions is based on checking moments of the distribution. If the local
density is much higher than expected, this indicates a clear clustered structure.
The homogeneity measure is used both to check whether there are any clusters
for a clique of variables and to determine the number of clusters required.

FFI Fordonsstrategisk Forskning och Innovation — www.vinnova.se/ffi

www.vinnova.se/ffi


44

Our contribution is to extend existing causal inference algorithms with a
cluster-based conflict resolution mechanism. In the final step, the PC al-
gorithm is run again, this time with the added new variable, and values
corresponding to cluster indices. If successful, the added variables will resolve
the cliques of ambiguous causal direction.
Furthermore, for determining the causal direction in the last phase of the
PC algorithm, we can use the assumption that the clustered structure in the
data is correspond to a cause variable. Therefore, the causal direction for this
variable is from the clustered index to the variables showing traces of this
clustering.
The above steps are then repeated until no more unexplained clusters in the
data are left. In this way, the existence of clusters in data will help resolve
the causal directions. We now turn to the evaluation of the proposed method.

Empirical evaluation

The proposed method is tested on the real-world data set collected by a fleet
of six city buses. In particular, the aim is to identify the causal relation
between the set of signals influencing fuel consumption.

Fleet of city buses

One application domain on which this approach has been evaluated is to
identify the causal relations between signals measured on-board heavy duty
vehicles. A causal network can be utilized to understand how various para-
meters are affecting the vehicle’s performance.
The attributes in the fleet of city buses, that we used, are AcceleratorPedal-
Pos, AmbientAirTemperature, BrakePedalPos, EngineCoolantTemperature,
EngineSpeed, FuelRate, RelativeSpeedFrontLeft, RelativeSpeedFrontRight,
SelectedGear, SteeringWheelAngle, VehicleSpeed.
In this dataset, there is one discrete variable i.e selected gear which appears
to cause clear clusters in the data. Figure 22 shows the relation between the
engine speed and the vehicle speed. In this example, selected gear causes the
grouping into clusters of different slopes. Hence, these form of clusters must
be taken into account when trying to distinguish causes from effects in the
data. There is another clustering where a vertical streak is observer at higher
density for all gears around of engine speed of 600 rpm corresponding to an
engine that is idling. Variation in engine speed was observed during start off
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the vehicle due to idling. There is no variable in the data corresponding to
idling, hence this is one candidate for a latent variable. It is very likely that
the causal effects in the engine differ between idling and normal operation.

Figure 22: The clusters in the engine vs. vehicle speed plot can be explained
by the selected gear.

We have added two latent variables to the data to account for clustered
structures, “LatentVar1” and “LatentVar2”. The first added cluster variable
(“LatentVar1”) represents “idle run” (engine speed below or around 620 rpm),
and the second (“LatentVar2”) indicates whether the bus is an old or new
generation (for example, the “Steering Wheel Angle” signal is not measured
in the old generation).
We then run the PC algorithm, first without the explained two latent variables,
then with them. The causal relation of the 11 measured attributes as a result
of the PC algorithm is shown in Figure 23. Note that the number of bi-directed
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edges (ambiguous causal direction) differs in the resulting graphs: there are
5 fewer bi-directed edges when the latent variables are added. This shows
that adding these variables helps in identifying causal directions between the
other variables. Moreover, some of the remaining bi-direction edges in the
graph with latent variable (Figure 23b) make sense.

Figure 23: Results of the proposed algorithm for the bus fleet data.

We propose and discuss the idea that clusters in the observational data
should be used as a clue for causal discovery. The underlying idea is that
inhomogeneities in the data are unlikely to appear spontaneously; instead,
they probably have a cause. If none of the variables existing in the data can
explain the cluster structure, it is an indication that a latent variable may be
behind it. However, it should be noted that this is only a heuristic. There
are many counterexamples, where inhomogeneities in the data can be created
from continuous processes.
Still, this is the same for most methods based on, for example, entropy
differences; that it is an indication and not the absolute truth. Deducing
causal direction from data is hard enough we must use all available information
provided, and actively look for more ideas. To the best of our knowledge,
information related to cluster structure has not been addressed in any of the
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previously works.
Clusters are abundant in real world data, which makes this an important
addition to the causal discovery tool box.

7 Dissemination and publications

7.1 Dissemination

7.1.1 Deployment on the VOSP server

The results of the HEALTH project has been deployed in Volvo Trucks
production environment called VOSP for prediction of vehicle component
status and breakdown prognosis of trucks. VOSP is a software developed
by Volvo to optimize the service planning of the trucks, which is used by
authorized workshops
The deployment has been offered as an advanced service for the trucks under
the gold contracts between Volvo dealers and customers. The work has been
limited to gold contract trucks because of three main reasons. First, we
wanted to make sure that potentially we have access to the entire service
and maintenance history of the truck. They are also chosen since customers
covered by this type of contracts do not need to go to any other dealer than
authorized workshops. The second reason is associated with the branding and
commercial purposes of the company to offer advanced maintenance services
to gold contracts so that other customers would be encouraged to go under
its coverage. The third reason is that there is a data management agreement
in place for gold contract trucks, which allows using of the data for Uptime
service.
The deployment aimed to run a pilot on a set of selected markets for a specific
set of components. There are four markets included in the pilot i.e., Sweden,
Switzerland, Finland, and Denmark. Usually, the predictive maintenance
alerts are intended for sophisticated components that a physical measurement
by a simple sensor could not detect the wear out or sometimes failure of the
part. The list of the selected target components includes the following five
vehicle parts: air compressor, turbocharger, front and rear air below, and
alternator.
Figure 24 displays the user interface of the VOSP server. As it can be seen in
the screenshot, the predictive maintenance system produces warning messages
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on the server for the Volvo dealers. The warning message informs the dealer
of an increased risk of failure for a specific component of a specific truck.
Finally, based on the part, the system recommends some actions to the dealer
to take like planning an earlier visit for the customer to check the component
or to consider repairing or replacing the component for the next visit.

Figure 24: User interface of the VOSP server

The alerts produced by the system are intended to support the service planning
process of the truck. This means that by predicting possible future failures,
not only we avoid extra visits to the workshop, but also, we avoid extra costs
related to unexpected breakdowns like towing costs or uptime promises. On
the other hand, the workshop people can preplan the repair process based on
the prognosis warning messages and order the required hardware in advance
and make sure that they have the right technician available for delivering the
service. Figure 25 illustrates the details of a prognostic alert produced by the
system for a specific truck.

7.2 Publication

The HEALTH project has led to the following publications and master thesis
that corroborate the objectives dened in Section5:
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Figure 25: Details of a predictive alert on the VOSP server for a truck

• Published:

– K. Chen, S. Pashami, Y. Fan and S. Nowaczyk, ”Predicting Air
Compressor Failures Using Long Short Term Memory Networks”,
EPIA Conference on Artificial Intelligence, 2019.

– P. Pirasteh, S. Nowaczyk, S. Pashami, M. Löwenadler, K. Thun-
berg, H. Ydreskog, and P. Berck ”Interactive feature extraction for
diagnostic trouble codes in predictive maintenance”, Proceedings
of the Workshop on Interactive Data Mining (WIDM 19)..

– S. Pashami, et al. ”Causal discovery using clusters from observa-
tional data.” FAIM’18 Workshop on CausalML, 2018.

– MR. Bouguelia, A. Karlsson, S. Pashami, S Nowaczyk, and A.
Holst ”Mode tracking using multiple data streams”, Information
Fusion 43, 33-46.

• Accepted:

– R. Khoshkangini, S. Pashami and S. Nowaczyk, ”Bayesian Network
for Failure Prediction in Different Seasons”, ESREL2020-PSAM15.

– M. Rahat, S. Pashami and S. Nowaczyk ”A: Predicting Turbochar-
ger failures using knowledge representation learning over Logged
vehicle datarocess for Proactive mainte”, ESREL2020-PSAM15.

– M. Rahat, S. Pashami, and S. Nowaczyk, ”Modeling turbochar-
ger failures using Markov process for Proactive maintenance”,
ESREL2020-PSAM15.
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• Submitted:

– R. Khoshkangini, S. Pashami and S. Nowaczyk,” Feature Extrac-
tion for Prediction of Vehicles with High Risk of Failure”, IDA2020.

– P. Berck, S. Narayanan, S. Pashami, ”Resolving Class Imbalance
using Generative Adversarial Networks”

– P. Mashhadi, S. Nowaczyk and S. Pashami, ”Stacked Ensemble of
Recurrent Neural Networks for Predicting Turbocharger Remaining
Useful Life”, Applied Science Journal.

– P. Berck, S. Thondgere, V. Nataraj and S. Pashami, ”Resolv-
ing Class Imbalance using Generative Adversarial Networks”,
ESREL2020-PSAM15.

• Master Theses:

– K. Chen,”Recurrent Neural Networks for Fault Detection”

– N. Sushmitha and N. Vismitha, ”Resolving Class Imbalance Using
Generative Adversarial Networks”
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8 Conclusion and future research

Early prediction of component failures is one of the possible ways to increase
the maintenance quality service which assures up-time, safety, and availability
of parts.
The HEALTH project provided several machine leaning solutions to early
detection of vehicles’ component failure accommodating multiple available
data sources. In this regard, we have illustrated how we can take advantage
of Recurrent Neural Network and Markov process for considering operation
history of the vehicles. Different sources of data including logged vehicle data,
vehicle service records and diagnostic trouble codes have been used in this
study. Furthermore, various Generative Adversarial Neural Networks were
implemented to alleviate the imbalanced problem of the faulty class, which is
one of the big challenges in this research area. Based on our analysis creating
a balanced training set improve the failure prediction of different components.
The journey for the deployment of machine learning based predictive mainten-
ance has also taken place during this project. IBM solutions have been used
for the deployment and training of the methods in the production environment.
The results are presented through the Volvo truck production environment
called VOSP producing a warning message to the dealer to express a high
risk of component failures for each individual vehicle. This potentially helps
the workshops people to do actions beforehand.
We are planning to continue the collaboration between Halmstad University
and Volvo Group on data-driven failure forecasting. We applied together
for a new project founded by Knowledge Foundation (KKS). This project
concentrates on knowledge representation for predictive maintenance.
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9 Participating parties and contact person

For more information, please contact:
Magnus Löwenadler, magnus.lowenadler@volvo.com

S lawomir Nowaczyk, Slawomir.Nowaczyk@hh.se
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