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FFI in short 

FFI is a partnership between the Swedish government and automotive industry for joint funding of research, 

innovation and development concentrating on Climate & Environment and Safety. FFI has R&D activities 

worth approx. €100 million per year, of which about €40 is governmental funding.  

Currently there are five collaboration programs: Electronics, Software and Communication, Energy and 

Environment, Traffic Safety and Automated Vehicles, Sustainable Production, Efficient and Connected 

Transport systems. 

For more information: www.vinnova.se/ffi 
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1. Summary  

The SMILE II project has developed two approaches to supervising Machine Learning 

ML) based models along with a set of evaluation metrics used to benchmark different 

safety cages (supervisors). Initially the project investigated approaches to training 

perception models. A demonstration was performed where an end-to-end network was 

trained to learn how to drive around a simulated version of the AstaZero test track. The 

system was implemented in VICTA Lab. Work on transfer learning for perception 

models was also made, where the Common Objects in Context (COCO) dataset was used 

to pre-train a perception model. The activations in the second last layer of the network 

was later monitored constituting the first approach to a safety cage. This approach was 

demonstrated using the Pro-SiVIC vehicle simulator from ESI. The second safety cage 

model is based on an autoencoder, that trains a neural network to replicate the input 

image on its output layer. The network compresses the image into a sub-space, and then 

tries to reconstruct the image. The idea is to tune the network to the known input data 

assuming that the network is capable of reconstructing known images correctly, and new 

unknown images should result in a higher reconstruction error. This approach was 

initially developed using toy data i.e. MNIST, EMNIST and CIFAR-10 and later with 

simulated data from Pro-SiVIC, GRAZ02, Caltech 101 and VICTA Lab. Finally, real 

world data from Dr(eye)ve and Berkeley Deep Drive was used to test and validate the 

models.  

 

2. Sammanfattning på svenska 

SMILE II har handlat om hur maskininlärningsalgoritmer (ML), och specifikt 

djupinlärning (DL) av djupa neurala nät (DNN), ska kunna användas inom 

säkerhetskritiska system. Bakgrunden är den ökade automationsgraden inom moderna 

och framtidens fordon. Radar och kamera är vanliga sensorer att använda i 

perceptionssystem för att detektera objekt i omgivningen. Tre huvudanledningar till att 

frågeställningarna i SMILE II är relevanta för både industri och akademi är (i) när 

ansvaret går från föraren till bilen behövs pålitligare system som måste kunna hantera alla 

nya situationer eftersom systemet inte kan lita på att föraren tar över kontrollen (ii) 

traditionellt programmerades perceptionssystemen för att känna igen fordon och 

människor etc. baserat på kända former. Framtidens system måste kunna känna igen alla 

typer av objekt och då lämpar sig datadrivna inlärningsmetoder baserade på ML och DL 

bättre än traditionella statiska filter-baserade system (iii) ML och DL tränas med 

historiska bilder som implicit beskriver de krav som systemet ska kunna hantera. Detta 

gör att befintliga funktionssäkerhetsprocesser inte går att applicera på ML eller DL-

baserade system. 

 

Projektet publicerade och presenterade inledningsvis bristerna i 

funktionssäkerhetsprocessen och kort därefter släppte ISO, PAS 21148 Safety of the 



 

 

Intended Functionality (SOTIF). SOTIF innehåller främst information om vad som 

behöver åtgärdas men saknar hur det ska uppnås för att kunna inkludera ML-teknologi i 

säkerhetskritiska system.   

 

Inom SMILE II tränar vi perceptionsmodeller och övervakningsmodeller (safety cage) 

med samma data. Övervakningsmodellen processar alla data innan de når 

perceptionsmodellen. Vi antar att övervakningsmodellerna blir experter på att känna igen 

data inom träningsområdet och kan varna om nya data som inte liknar träningsdatan 

skickas in i systemet.  

 

Metoder för att jämföra prestanda på övervakningsmodeller har presenterats inom 

projektet. Beroende på typ av övervakningsmodell kan olika mått användas. Totalt har vi 

använt fyra olika grafer och sju mått på avvikelse. Mått som kommer från både 

övervakningsmodellen och perceptionsmodellen används.  

 

De algoritmer som utvecklats har implementerats i två olika demonstratorer. En baseras 

på Vehicle ICT Arenas Lab (VICTA LAB). Här tränades ett end-to-end system 

(perception och reglersystem i ett) för att automatiskt kunna styra ett fordon på en 

simulerad testbana (ASTA ZERO).  En ytterligare demonstrator som fokuserade på safety 

cage konceptet demonstrerades med i en simulatormiljö från ESI (ProSiVIC). Denna 

modell tränades först med generella data och sedan specialiserades träningen med data 

från simulatorn. Konceptet visar att det är fullt möjligt att detektera avvikande data med 

ett safety cage system.   

 

Projektet har visat stora framgångar och har levererat mot de mål som både projektet satt 

upp samt de FFI har. Resultaten har presenterat på ett flertal konferenser och workshops 

internationellt. Vi har blivit inbjudna att tala på flera nationella och internationella 

konferenser. Vi har samverkat inom projektet och hittat nya projektidéer med andra FFI-

projekt, t.ex. ESPLANADE och FRAMTEST. Dessutom har inom projektet flera exjobb 

utförts där vi haft samarbete med bl.a. Chalmers, Blekinge Tekniska högskola och 

Högskolan i Halmstad. Projektet har i enlighet med EMKs mål utvecklat metoder för 

simulering och validering av funktionalitet. Slutligen har projektet utvecklat metoder 

kring data-driven utveckling, dvs för att utveckla metoder baserat på syntetiska data, 

simulerade data och slutligen med verkliga data.  

 

 

 

3. Background 

Autonomous and highly automated vehicles currently have a considerable momentum 

(Knauss et al., 2017). Machine learning (ML), and in particular deep learning (DL), is 

one critical enabling technology for the autonomous and automated systems. Typically, 

DL is used to process high dimensional inputs such as camera images to extract a digital 

representation of the surrounding. The DL-algorithms have proven themselves successful 



 

 

for perceiving objects within the complex traffic (Huval et al., 2015) (LeCun et al., 

2015). ML-algorithms are trained, using historical data, to e.g. recognize objects within 

an image. Since traffic is highly dynamic and every traffic situation consists of a 

combination of stationary infrastructure and (most often moving) road-users the 

perception models need to be able to generalize well to handle all new situations. 

However, no machine learning model will be sufficiently complete to avoid misbehavior 

under all circumstances on the road (Spanfelner et al., 2012), thus also DL will 

sometimes fail to generalize. Unfortunately, the models trained using DL are particularly 

opaque in nature, as they often consist of huge networks with a number of parameter 

weights in the order of magnitude of hundreds of millions (Han et al., 2016). 

Consequently, there are very limited options to analyze miss-classifications from a 

functional safety perspective, as neither traditional code reviews nor exhaustive safety 

analysis techniques are possible. 

  

By accepting that the DL-system will make miss-classifications, we aim at developing a 

run-time monitoring system for DL-based perception using the concept of adaptive safety 

cage architectures (Heckemann et al, 2011), or as referred to by Adler et al. (2016): 

safety supervisors. Originating in a workshop series with the industry partners of the 

predecessor SMILE project (Englund et al., 2017, Borg et. al. 2017), we envisioned a 

safety cage, encapsulating the DL-based perception model capable of monitoring the 

input to the DL-based system and thus being able to predict anomalies in the model’s 

classification uncertainty. Varshney et al. (2013) describes this as a classifier having a 

reject option when the uncertainty is too high, e.g., forcing a human to intervene. In line 

with the proposal by Heckemann et al. (2011), we will distinguish between a safe region 

of operation and an invalid region that could lead to a dangerous situation. If the DL-

based perception enters the invalid region, the safety cage will invoke an appropriate safe 

action, such as graceful degradation based on deterministic algorithms.  

 

SMILE II explores several design approaches for safety cages whereas the safe action is 

planned for the next stage of the SMILE research program (SMILE III). 

  

The motivation for focusing on safety cages is that current alternatives to prevent system 

failures, e.g., fault prevention and fault avoidance, cannot address all malfunctions due to 

the complexity of the system and the non-deterministic traffic environment (Ramos et al. 

2017). Instead, our long-term goal is to accomplish ASIL decomposition by developing 

the safety cage as a functionally redundant system to the actual control system. For such a 

solution, the highly complex control function (i.e., applying DL) could be developed 

according to the quality management standard, whereas the comparably simple safety 

cage could be addressed by traditional verification and validation (V&V), or possibly 

even proven correct using formal verification methods (Abdulkhaleq et al., 2015) 

(Kwiatkowska, 2019). 

  

A useful by-product from applying run-time monitoring to detect anomalies (i.e, the 

envisioned safety cage) is the possibility to collect a set of images for which the DL-

based perception is the least certain. Such a dataset could later be used to further increase 



 

 

the robustness of the DL-models, both by supporting interpretability of classification 

results and by guiding future collection of training data. Guidance of training data 

collection is analogous to the concept of uncertainty sampling in active learning (Settles, 

2012), i.e., enabling a DL model to perform better with less training by actively selecting 

training data.  

  

ICT Arena (VICTA) Lab was initially identified as a key platform for demonstrating the 

proposed technology. VICTA Lab provides an electrical architecture of a vehicle where 

sensors such as radar, camera and lidar are simulated and are available for a developer to 

use as input for any perception system. Other projects that are related to and have cross 

fertilized the SMILE II are e.g. DRAMA, Driver and passenger activity mapping, where 

DL/ML-algorithms were developed for understanding driver behavior and activities, e.g. 

driving, drinking, talking on the phone, reading etc. (Torstensson et. al.  2019a, 

Torstensson et. al. 2019b) In AIR (Action Intention Recognition) systems were developed 

for both predicting vehicle behavior based on ML algorithms (Duran et. al. 2017, 

Englund  2019) as well as face expression detection based on DL trained on camera data1.  

 

QRTECH currently leads the demonstrator work package in the EU project TRACE. The 

demonstrator uses lidar, radar and stereo camera images processed through deep neural 

networks to implement DNN-perception and object identification for autonomous cars. 

Currently, the system does not apply a safety cage concept. In parallel, QRTECH 

participates in the newly initiated AutoDrive, which looks into architectural measures for 

increasing confidence in neural networks. Dr. Markus Borg at RISE SICS is WP leader in 

the ITEA3 project TESTOMAT on test automation. Among other goals, TESTOMAT 

will study automated testing targeting non-functional system properties such as functional 

safety, i.e., research that might also be highly relevant to the SMILE program. The 

Swedish TESTOMAT consortium includes Bombardier, Saab, Ericsson and several 

SME.  

 

 

4. Purpose, research questions and method 

The purpose of the project is to develop enabling technologies that can be used in 

vehicles to reduce the number of injuries and fatalities in traffic. This has been achieved 

in close collaboration between research institutes, SME, OEM, and academy, i.e., the 

strong SMILE consortium will contribute to Sweden’s international competitiveness in 

machine learning for safety-critical applications. The purpose was also to strengthen the 

machine learning competence within the Swedish automotive industry, in particular to 

support V&V of DL-based solutions - a prerequisite to allow innovative solutions related 

to functional safety within the complex architecture of electrical systems of cars as 

pointed out in the Strategic Agenda of the Machine learning within FFI. 

 

 

1 https://github.com/CarmenLee111/RISE2 

https://github.com/CarmenLee111/RISE2


 

 

In particular increased understanding about how ML/DL-based systems can be used 

within safety critical systems will be developed. To facilitate the work, the following 

research questions were defined as the project was designed to help guide the activities: 

 

- What possible methods are available to guarantee safety in ML-based algorithms 

for safety critical vehicular systems?  

- Within what areas/systems is ML required? 

- What are the requirements of those systems? 

- Are there any obstacles for the introduction of DL in safety critical systems? 

- How can we create viable paths forward and what future concepts should be 

evaluated to show that the safety is achieved and maintained in safety critical 

systems? 

We have used a range of research methods to tackle the research questions. Initially, we 

focused on understanding the industrial needs of the Swedish automotive industry 

through a workshop series with industry participants. While the workshops were 

organized as part of SMILE I, the collected data was analyzed in SMILE II. In parallel, 

we conducted a state-of-the-art review of verification & validation of machine learning-

based systems. The findings from the review was validated by industry practitioners 

through a questionnaire-based online survey using sampling based on the social platform 

LinkedIn. These initial activities were jointly reported in a journal publication (Borg et 

al., 2019a).  

 

Following the empirically grounded state-of-practice and state-of-the-art analyses, the 

research entered a solution-oriented mode. We explored and evaluated different safety 

cage concepts through action research, i.e., with tight feedback cycles between problem 

owners and solution providers. The different safety cages were evaluated through 

experiments, e.g., Henriksson et al. (2019a) and Henriksson (2019b). Finally, in 

Vogelsang and Borg (2019), we conducted interview studies with data scientists to collect 

rich empirical data on how they perceive requirements engineering in their development. 

 

 

 

5. Objective 

FFI objective Project 
contribution 

Motivation 

Increasing the Swedish capacity 
for research and innovation, 
thereby ensuring competitiveness 
and jobs in the field of vehicle 
industry 

Very strong The project has had a very strong core-team of 
participants that have produced a number of 
journal and conference papers as well as 
presentations to increase presence of Sweden 
within this research field. 



 

 

Developing internationally 
interconnected and competitive 
research and innovation 
environments in Sweden 

Very strong The participants have attended a number of 
international conferences and workshops to 
disseminate the project findings. Event 
locations include Sweden, USA, Greece, and 
the Dominican Republic. Markus Borg was a 
guest researcher at the Security and Trust 
Center (SnT), University of Luxembourg, for 
two months to replicate work on search-based 
testing for DL-based ADAS systems. Finally, 
thanks to the visibility from SMILE II, the 
consortium was invited to join two EU project 
applications on automotive safety and deep 
learning.  

Promoting the participation of 
small and medium-sized 
companies 

Strong QRTECH is an SME that is part of the project. 

Promoting the participation of 
subcontractors 

Strong QRTECH and Semcon are already 
subcontractor of OEMs. 

Promoting cross-industrial 
cooperation 

Very strong DL is applied in many industries e.g. avionics, 
medicine, process where inspiration was 
gained. In addition, the project has presented 
our ideas on e.g. SEFAIAS which was focusing 
on autonomous systems research in general. In 
addition, additional presentations were made at 
SEAA and IEEE AI-testing where the audience 
also comes from broad research fields. 
Presentations have also been made to cross-
disciplinary events related to requirements 
engineering and software testing. 

Promoting cooperation between 
industry, universities and higher 
education institutions 

Very strong All participants participate in all WPs and 
strategic as well as operational decisions were 
made throughout the project. The consortium 
has had monthly meetings and in periods more 
often to finalize demonstrators, writing papers 
and preparing for conference presentations. 
The institutes and the PhD students that are 
associated with the project develops algorithms 
that SME and OEM implement. In addition, five 
master thesis projects have been made related 
to SMILE II project. Volvo cars also just started 
a PhD project financed by Vinnova/FFI on the 
topic Safe Architectures for ML-based 
functions: “Architectural Design and 
Verification/Validation of Systems with Machine 
Learning Components”. Volvo Cars also had a 
short-term scholar position at UC Berkeley on 
the topic of generative modelling for this 
purpose of safety in AI.  

 

 

 

 



 

 

 

 

 

 

 

 

 

EMK objective Project 
contribution 

Motivation 

Increase the technical maturity 
level (by measuring “technology 
readiness level” (TRL) and 
rationalize product development 
methods in order to achieve 
faster time- to-market and 
increased customer value 

Very strong Taking DNN from the theory level (TRL2) 
towards testing in a vehicle (TRL4) is a strong 
contribution of this project towards 
implementing automated vehicles.  
Several approaches to safety cage design 
have been developed and tested. The 
demonstrator takes the system to TRL 4 where 
we tested the algorithms in small scale in a 
simulator (ESI Pro-SiVIC).  

Verification and validation of 
solutions that are based on ML 

Very strong The project has collaboration with VICTA Lab, 
that has a HIL-simulator where the algorithms 
may be tested. QRTECH are experts in 
Functional Safety and will bring in knowledge 
on how the proposed safety cage can be 
verified and validated. 
Initially, the project proposes a number of 
evaluation metrics that were later used for 
safety cage evaluation. Using these metrics 
allow evaluation in several aspects. VICTA Lab 
allowed us to demonstrate an end-to-end DL-
based learning system capable of driving along 
a virtual representation of ASTA ZERO. 

Data driven product 
development 

Very strong The project aims at using real world data for 
the development of algorithms. 
In SMILE II safety-cage concepts were 
implemented based on ML i.e. data driven 
algorithms. Initially benchmark data such as 
MNIST, OMNIGLOT, EMNIST, CIFAR-10 and 
Imagenet were used. Later, simulated data 
from Pro-SiVIC GRAZ02, Caltech 101 and 
VICTA Lab were used. Finally, real world data 
from Dr(eye)ve and Berkeley Deep Drive was 
used to test and validate the models.  

 
 
 



 

 

6. Results and deliverables 

The project was divided into 4 work packages. Each WP has organized around tasks and 

produced related deliverables. Below are the results presented. The work is first described  

and then the deliverables are summarized. It should be noted that the research questions 

in Section 4 has guided the work, thus, not all questions are explicitly answered but are 

rather discussed. 

 

6.1 Results from WP1 - Training strategies 

QRTECH tested their safety cage model using pretrained networks. During the proof of 

concept stage, we used pretrained networks from Google Tensorflow, for image 

classification (More details in WP2). During the actual demonstrator work, we used a 

pretrained network from Waleed Abdulla’s Github for instance segmentation (More details 

in WP3).   

On the synergy between safe deployment and model improvement 

In this section we discuss the difference between a machine learning and software 

development project from the perspective of verification and validation. We argue that 

the monitoring is an imperative part of developing a safe machine learning system and 

discuss how an implemented safety cage can be used for online monitoring but also as an 

intelligence for efficient data collection.  

 

In Figure 1 we show the general structure of a machine learning project. Any project 

starts with either collecting some data or using pre-collected data which has been 

identified as useful for e.g. solving a business question or for developing an application. 

Using this data, the model is then trained and tested for generalization performance. After 

this is done the model is deployed, implying exposure to a real-world situation with more 

input data as a result. The reason for deployment is two-fold: The first, and most obvious 

reason is that we think that the developed model will generate some value. The second, 

and equally important reason, is that by deploying the model into the real world, we are 

able to monitor the performance of the model and identify scenarios or regions of input 

data where the model is performing worse than average, or where we have limited data in 

our initial sample used to train the model in the first iteration. If we are able to identify 

this type of data, we are able to intelligently collect data that we need to improve the 

model through further iterations of the cycle in Figure 1.  



 

 

 
Figure 1. Left: Overview of a ML-based project structure. Right: Overview of a V-model 

project structure. 

 

From a verification and validation point of view it is interesting to compare this structure 

to a software development project which, in the context of safety critical systems, is 

structured according to the V-model depicted on the right side of Figure 1. On a high 

level the V-model concerns three main parts of the development process: Specification, 

Design and Test. From the perspective of V&V these two project structures are quite 

dissimilar. The specification of a machine learning system is not trivial and to a large 

extent not desirable. Machine learning systems are not rule based and don’t lend 

themselves to a break down of high level specifications to design specifications. The 

design part is replaced by model training where the detailed design of the system is 

replaced by optimization with the end result determined by the provided training data. 

We emphasize that training data can not be equated with a specification. Whereas a 

specification is a general statement that can be tested, the training data is a mere snapshot 

of reality. When it comes to testing, the machine learning community has almost 

exclusively been interested in generalization performance. This is quite different from the 

testing activities of the software development community where focus has been on 

attributes such as robustness, stability, coverage, provable safety, integration etc. In light 

of this difference it becomes apparent that the ability to monitor the machine learning 

component and robustly assess the validity of the output is imperative to the development 

of safe applications. In short, the role of monitoring is to guide the collection of data and 

re-training strategy to iteratively align the cumulated collected data and reality.  

 

The safety cage works by robustly assessing deviations from the normal behaviour of the 

machine learning model. In this project we explore how this can be used to 1) allow for a 

safe deployment of the machine learning system on-line and importantly also serve as 2) 

an intelligent filter that can be used for efficient data collection and model retraining. 

From the point of view of Figure 1, it is clear that there is a synergy between these two 

aspects, where the safety cage is one realization which creates the capability to collect 



 

 

data intelligently which in turn is the foundation for re-training and hence model 

improvement.  

 

Successful applications of supervised DL require huge amounts of training data. Since 

acquiring accurate training data is a costly endeavor, methods that maximize the return on 

investment for the tedious phase involving data collection and annotation are in high 

demand. We refer to approaches that support this phase as training strategies. 

 

The first step toward the development of a training strategy for an ML feature requires 

proper understanding of the domain, the application, the operational context, and the 

available data. These activities correspond to conventional requirements engineering 

(RE). However, we believe that RE for ML-based systems engineering forces 

requirements engineers to adapt their processes and practices. As a first step to 

understand RE for ML, we conducted an interview study to explore how ML experts 

approach the core activities in conventional RE, i.e., elicitation, analysis, specification, 

and assurance of requirements. In Vogelsang and Borg (2019), we argue that 

requirements engineers working on ML-based systemes must 1) understand ML 

performance measures to state good functional requirements, 2) be aware of new quality 

requirements such as explainability, freedom from discrimination, and specific legal 

requirements (e.g., GDPR), and 3) integrate ML specifics in the overall RE process. In 

ML-based systems, the training data becomes part of the solution, thus RE must expand 

to encompass also the training strategy. 

 

While proper RE lays the foundation for robust ML-based systems, the opposite end of 

the systems engineering lifecycle, i.e., the concluding V&V, must also be adapted to 

match the unique characteristics of ML. When engineering ML, V&V must cover also the 

training data and the neural network architectures of DL. From our perspective, RE and 

V&V are two supporting processes that effectively buttresses the ML engineering.  

 

We published a review article compiling the state-of-the-art in V&V of safety-critical 

systems that rely on ML (Borg et al., 2019a). The article also reports from a workshop 

series with automotive experts in Sweden, confirming that the established automotive 

safety standard ISO 26262 largely contravenes the nature of DL. Issues that arise include 

1) the lack of explainability provided by DL models (also discussed in Borg (2019) and 

Borg et al. (2019b)), 2) trained behavior that is represented in weights in neural networks 

instead of in reviewable source code implemented by humans, and 3) the question of 

what traceability from input to the internals of a DL component means (also discussed in 

Borg et al. (2017). Our findings are in line with the argumentation by Salay et al. (2018), 

and also confirmed by us in a SEFAIAS workshop paper (Henriksson et al., 2018).  

Coincidentally, the same month as our review article was published, ISO published 

ISO/PAS 21448 addressing many of the issues we highlighted. However, ISO/PAS 

21448 is just an embryo of a possible future automotive safety standard that covers ML. 

The content of ISO/PAS 21448 is largely informative, with only few prescriptive parts. 

The document tells the reader what must be done, but not how to do it - further research 



 

 

is needed to develop efficient and effective approaches to develop robust ML-based 

systems.  

VICTA Lab provides the basic tools needed to train, test and demonstrate ML algorithms 

for autonomous driving: high-quality environment models, such as AstaZero, and a 

reasonably realistic virtual representation of a Volvo XC90. 

As proof-of-concept (PoC) we have trained a neural network that replicates the behavior 

of a human driver. The goal of this first PoC was to train an algorithm that could drive a 

vehicle at constant speed around the AstaZero circuit in autonomous mode. The input given 

to the algorithm was images from a single camera in front of the simulated car, and the 

output was a steering angle. After training the algorithm with images and steering wheel 

angels from manually driving a few laps around the circuit, the algorithm was able to do 

the same lap in autonomous mode. This small PoC shows that it is possible to utilize the 

existing tools in VICTA Lab to develop autonomous driving algorithms based on ML. 

However, to establish VICTA Lab—and in the wider perspective, training in a simulated 

environment—as a viable long-term option for ML developers we need to demonstrate that 

VICTA Lab is one essential and efficient tool in an end-to-end toolchain for autonomous 

driving algorithms. With “end-to-end tool-chain” we mean that it shall facilitate taking an 

idea from the scratch pad, to developing it in a simulated environment, and to eventually 

be able to demonstrate it in a real car. To accomplish that, at least two challenges need to 

be addressed: 

● Improving the toolset for collecting data, and for demonstrating and testing 

algorithms; 

● Demonstrating successful transfer learning, i.e. showing that algorithms 

developed in VICTA Lab can successfully be transferred to a real-world 

application. 

Regarding testing of DL algorithms, the field is significantly immature. Our conducted 

background research showed the lack of procedures when it comes to verifying any DL 

component that has been trained with big datasets. Similar to the safety-cage concept as a 

part of verification, we found several related articles describing different methods that 

limit the system to not operate on samples too diverse from the training samples or from a 

different distribution. Unfortunately, all these methods were constructed and tested 

without common basis, thus rendering comparison between the methods very hard.  

 

To allow for fair comparisons between safety-cage methods we designed a comparative 

method to unify testing of safety-cages (Henriksson et al., 2018). The paper describes 

recommended metrics, datasets and evaluation criteria to achieve better comparison 



 

 

between methods. The evaluation metrics were derived from comparing the metrics used 

in related work, as well as from interviews with leading vehicle safety experts.  

 

As the safety-cage approach is a measure to increase the probability that the deep 

learning model operates within its’ functional domain, a typical experiment can be to 

study the performance of the model when switching domain. This switch is commonly 

referred to as transfer learning, where the model is specialized in a certain domain then 

slight retrained for the desired target. This ability to transfer knowledge can be utilized in 

the design of safety-cages. The design could incorporate performance of distinguishing 

between two different domains, i.e. asking the safety-cage to decide if a sample belongs 

to the training domain or a transferred one.  

 

During the project course four master theses have been conducted touching on the 

domain of transfer learning; safety-cage strategy and out-of-distribution detection. More 

specifically, the theses investigated performance of different designs of existing safety-

cages;  different ways of converting generative networks to work as safety cages; the 

impact of different performance metrics as well as suitable outlier sets that could act as 

the transfer set.  

Deliverable D1.1 Software that handles training DNN from simulated data 

The delivery was carried through as a master thesis. (E. Kratz 2019a) that investigated the 

performance of three trained convolutional autoencoder-based novelty detection 

algorithms when applied to road traffic images. The thesis tested high-resolution images 

for seen and unseen scenarios. Each of the scenarios was represented by a real-life dataset 

capturing real road-traffic as well as a simulated dataset with low scene variation.  

Deliverable D1.2 Methods for continued training of pre-trained models using real-

life data.  

Due to the enormous cost of labeling real-world data, accessing “good enough” data from 

simulators could be a simpler entry step. Constructing simulators can be cost effective, 

since once it is created it can rapidly produce pre-labeled data for any scenario the user 

desired. Thus, if possible, it is desired to use simulated training data as long as it fulfills 

the requirement of the trained model. However, as seen in (E. Kratz et. al 2019b) a model 

trained solely on simulated data will not perform as good as a model trained on real-life 

data. This performance difference is easily explained as the model will be evaluated on 

real-life data.  

 

An interesting note is that simulators are not constructed to inherit “flaws” as exist in the 

real-world. This could include solar variation, varying image saturation, color 

disturbances or noise in the images which will occur in real-life data, which is part of the 



 

 

learning of the model. With that said, it is clear that simulated data is an essential 

ingredient to rapidly increase training sets and work as a great basis for transfer learning, 

i.e. as a pre-trained step before transferring it to the desired domain. In addition, with the 

simulator tools scenarios that are hard to record in the real-world can easily be accessible. 

With these additional scenarios, it is a high probability the model will perform even better 

than a model solely trained on real-life data.  

Deliverable D1.3 Evaluation of performance during training 

The safety-cage performance changes as the training proceeds (Henriksson et al. 2019). 

In our study, three different training setups for two different Deep Neural Networks were 

conducted, yielding six different training runs. For all these two safety-cages were 

applied after every epoch for the first 10 epochs, and every 10th following that. The 

results showed a linear improvement of the ROC-curve as the accuracy of the model 

improved, up until the model started to overfit, see Figure 2.  

 

 

Deliverable D1.4  for demonstration in WP3 

Throughout the full project, a variety of models have been trained for different purposes. 

For the safety-cage development both DNN architectures were designed and trained as 

well as optimization of safety-cage parameters for the algorithms that required tuning. 

For the simulator demonstration, a pre-trained model trained with COCO data was used 

as transfer learning base, which later was trained with 10000 simulated images. For a 

more detailed description, see Results in WP3 Section. 

 

Figure 2. The safety-cage performance as a function of the accuracy of the model. For all six different models, we 

can see a linear increase in performance. OM refers to safety-cage OpenMax; BL refers to safety-cage BaseLine. 



 

 

6.2 Results from WP2 Data monitoring 

In recent years, deep neural networks have reported superhuman classification accuracy 

for specific tasks (He et al., 2015), but inevitably they will occasionally fail to generalize 

(Spanfelner et al., 2012). Unfortunately, from a safety perspective, analyzing when this 

might happen is currently not possible due to the black-box nature of the networks. What 

could be done, however, is to perform runtime monitoring of input data to signal when 

there is a significant distributional shift, i.e., the input data does not resemble the data used 

for training the network. In SMILE II, we studied previous work that proposed this 

approach. 

 

In a paper on ensemble learning, Varshney et al. (2013) describes a reject option for 

classifiers. Such a classifier could, instead of presenting a highly uncertain classification, 

request that a human operator must intervene. A common assumption is that the classifier 

is the least confident in the vicinity of the decision boundary, that is, that there is an inverse 

relationship between distance and confidence. While this might be true in some parts of the 

feature space, it is not a reliable measure in parts that contain too few training examples. 

For a reject option to provide a “safe fail” strategy, it must trigger both 1) near the decision 

boundary in parts of the feature space with many training examples and 2) in any decision 

represented by too few training examples. 

 

Heckemann et al. (2011) proposed using the concept of adaptive safety cage architectures 

to support future autonomy in the automotive domain, i.e., an independent safety 

mechanism that continuously monitors sensor input. The authors separated two areas of 

operation: a valid area (that is considered safe) and an invalid area that can lead to 

hazardous situations. If the function is about to enter the invalid area, the safety cage will 

invoke an appropriate safe action, such as a minimum risk emergency stopping maneuver 

or a graceful degradation. They argued that a safety cage can be used in an ASIL 

decomposition by acting as a functionally redundant system to the actual control system. 

The highly complex control function could then be developed according to the quality 

management standard, whereas the comparably simple safety cage could adhere to a higher 

ASIL level. In SMILE II, we follow the terminology proposed by Heckemann et al. (2011), 

i.e., we refer to our solution proposal as a safety cage (with some exceptions). 

 

Adler et al. (2016) presented a similar run-time monitoring mechanism for detecting 

malfunctions, referred to as a safety supervisor. Their safety supervisor is part of an overall 

safety approach for autonomous vehicles, consisting of a structured four-step method to 

identify the most critical combinations of behaviors and situations. Once the critical 

combinations have been specified, the authors propose implementing tailored safety 

supervisors to safeguard against related malfunctions. Note that we use the term supervisor 



 

 

instead of safety cage in Henriksson et al. (2019a) and Henriksson et al. (2019b) - but we 

refer to the same solution concept. 

 

Different safety cage concepts were developed and implemented by the partners in the 

project. QRTECH’s concept involved performing statistical analysis on the activations of 

neurons in the CNN. From the analysis a threshold was set for various classes to 

accept/reject the prediction from the neural network. As a first step, a proof of concept 

study was done using a simple neural network trained to classify handwritten digits from 

the famous MNIST dataset. The activations of the last but one layer was analyzed and 

thresholds were set for each of the class. As outliers, the omniglot dataset containing about 

24000 examples from around 50 alphabets were used. Using the thresholds from above 

along with a threshold for scores, 70% of the outlier data was rejected. As a next step, a 

slightly more complicated CNN was trained to classify German traffic signs. The CIFAR-

10 dataset was used as the outlier.  With similar analysis and thresholds as with the MNIST 

case, we found that more than 90% of the outlier data was rejected although around 35% 

of the test data were also rejected. We hypothesize that the CNN was overfitted on the 

training set. This however might be a better situation as a neural network that is overfit on 

the training data will fail to generalize well and thus might be good for a safety critical 

solution.  

 

Moving from toy datasets described above, QRTECH also developed a proof of concept, 

to verify if the safety cage concept would work with transfer learning. In this case, we used 

neural networks Mobilenet and Inception-V3, that have been trained on the imagenet 

dataset. The pretrained models that were used are from the Google tensorflow team and is 

currently available in the following link: 

https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/#0. These 

networks were retrained with the GRAZ02 dataset (containing images of car, bike and 

person) and tested with the Caltech 101 dataset as the outlier. The results suggested that 

the safety cage was able to identify more than 90% of the data from the outlier dataset for 

rejection. As the results from these proof of concept experiments was very positive, this 

safety cage concept was then chosen to be implemented as QRTECH’s demonstrator in 

WP3. 

 

Another approach which uses only the input data to detect anomalous regions  is based on 

a deep neural network using an auto-encoder architecture, which learns to reconstruct the 

input images to the perception layer of the system. The reason for studying this type of 

approach is due to the different use cases presented by different supplier agreements. In the 

approach above, explicit access to the neural network is required, which might not always 

be possible if not developed in-house. The method described in this section however only 

https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/#0


 

 

requires access to training data which in some cases might be preferable. The system is 

trained on the inlier data only and thus learns to reconstruct the corresponding inlier 

images. When the algorithm is subjected to novel data (outlier region) it is not able to 

reconstruct the images to the same degree of accuracy, and the reconstruction error between 

the input and reconstructed image can be taken as a metric of how well a scenario fits into 

the inlier region. In this way the algorithm doesn't need to learn all unknown scenarios, it 

is enough that it can determine whether or not a scenario is in the inlier region. 

In Figure 3 we show results from a proof of concept where we have implemented a model 

on simulated data provided by QRTECH. In this case the model is trained on images of 

empty high-way scenarios (inlier data). We then see if it is able to distinguish these from 

scenarios including vehicles (outliers).  

 

Figure 3. Upper left histogram illustrates the anomaly score, lower left depicts the ROC. 

Images to the right illustrate inlier original (top) reconstructed (middle) and difference 

(bottom) and middle and rightmost illustrate outlier images original (top) reconstructed 

(middle) and difference (bottom). 

The three columns show three different examples. The first row is the input image to the 

algorithm. The second row is the reconstruction and the third row is the difference between 

the input and reconstruction. The first column in Figure 3 is an example from the inlier data 

set. As we can see the difference between in- and output is very small (difference image is 

mainly all black). Column two and three represent images from outlier data set (including 

objects on the road). For these examples, the reconstruction is worse, and the difference 

image exhibits regions with high pixel intensity. The value of the loss (above each column) 

is the sum of all these pixel intensities and hence higher for the outlier data. The loss for 

all the images in the test data can be seen in the histogram. There is negligible overlap 



 

 

between the loss for the inlier and outlier images. It is hence possible to reject an outlier 

scenario by rejecting all images with loss larger than ~50. We have further improved the 

method by a novel loss metric that uses the actual statistics of the pixel intensities in the 

difference images.  

We can actually go one step further and use the high pixel intensity regions in the difference 

image as a marker for where in an image an unknown object is located. For the outlier 

images, the unknown part of the image is the location of the vehicle. Figure 4 shows 

examples of this where the algorithm is able to correctly mark the vehicle as something 

unknown (red mask). 

 

Figure 4. Classification results. 

 

A method for studying how the signals inside the DNN affect the output is developed 

within the project through a master thesis at Halmstad University (Abdalla 2019).    

 

A novel approach of interpreting the decisions of DNNs is developed (Abdalla 2019). 

The approach depends on exploiting generative models and the interpretability of their 

latent space. Three methods for ranking features are explored, two of which depend on 

sensitivity analysis, and the third one depends on Random Forest model. The Random 

Forest model was the most successful to rank the features, given its accuracy and inherent 

interpretability.  Figure 5 shows how one can manipulate one neuron in the bottleneck 

layer of a variational auto-encoder to achieve different states of a walking person.  

 

 



 

 

Figure 5.  Results from manipulating one neuron in the bottleneck layer of a variational 

auto-encoder to achieve different states of a walking person.  

 

 

As in any machine learning related work, a major requirement for the solutions developed 

in this project is the availability of suitable data for training and testing. Over the period of 

the project, we realized that fully labeled and annotated traffic images are seldom available 

in the public domain.  To develop solutions faster, QRTECH took the approach of using a 

simulation environment Pro-SiVIC from ESI to provide relevant images for the specific 

use cases defined in the project. In particular, the following  scenarios were simulated to 

generate data (i) driving on an empty highway, (ii) driving on a highway with traffic under 

sunny weather, (iii) driving in a tunnel, (iv)  driving in foggy conditions and (v) driving in 

urban environments. The generated datasets were then shared with all partners in the 

project.  To test the safety cage concepts, driving on a highway under sunny weather was 

taken as the inline data set and the other datasets were used as the outliers. 

Deliverable D2.1 An implementation of a safety cage for image input  

In a series of talks, some of them invited, we have presented how our safety cage 

approach could fit in the bigger picture of engineering according to the newly published 

ISO/PAS 21148 Safety of the Intended Functionality (SOTIF). The talks have been given 

at both national and international events, including: 

 

● Explainability First! Cousteauing the Depths of Neural Networks 

○  GI Dagstuhl Seminar on "Explainable Software for Cyber-Physical 

Systems", Jan 7, 2019. (slides) 

● Trained, Not Coded - Approaching Robust Machine Learning by Safety Caging 

Vehicular Perception 

○ Annual meeting of IFIP 2.9 Requirements Engineering, Punta Cana, 

Dominican Republic, Feb 20, 2019. 

● Trained, Not Coded - How Safe Automotive Machine Learning Orbits 

Requirements Engineering 

○ Swedish Requirements Engineering Network (SiREN), Signal Meeting 

2019, Lund, Sweden, May 7, 2019. 

● Trained, Not Coded - Toward Test Automation for Safe Machine Learning 

○ Test Automation Research for Industry, Stockholm, Sweden, April 11, 

2019. 

● Trained, Not Coded - Still Safe? 

○ Software Technology Exchange Workshop (STEW’19), Lund, Sweden, 

Nov 14, 2019. 

 

 

As described in the summary above, several different types of safety cages were 

implemented and tested. One such implementation involved statistical analysis of neuronal 

activations in the neural networks to set thresholds for accepting and rejecting a 

https://www.slideshare.net/borgmarkus/explainability-first-cousteauing-the-depths-of-neural-networks
http://ifip29.org/


 

 

classification. Another approach was to use a variational autoencoder to detect outliers i.e. 

images that are not part of the training set.  

Deliverable D2.2 Results from empirical evaluations 

From the proof of concepts evaluation, both the safety cage concepts that were evaluated 

performed exceptionally well in identifying outlier data. Full discussion of the results from 

the evaluation are provided in the above summary.  

 

Deliverable D2.3 A method to extract a set of highly uncertain input data 

The output of the safety cage is to either accept or reject a particular image. In case of the 

safety cage with the statistical analysis of the neuronal activation, it is the classification 

that is rejected. This might be due to the provided object being very far from objects in the 

same class in the training data set. In the case of a variational autoencoder, a rejected image 

contains objects that are not in the “normal” training set. Thus the output of both the safety 

cages provides the method to extract highly uncertain input data. 

6.3 Results WP3 Demonstrator 

Based on the safety cage concept developed and tested in WP2, QRTECH implemented a 

live demonstrator in WP3. The demonstrator used virtual prototyping platform Pro-SiVIC 

from ESI as the sensor input. State of the art neural network, Mask-RCNN was trained to 

classify and segment the input images. We used the network that was already trained on 

the COCO dataset as the starting point (see reference Waleed Abdulla, Github) and used 

around 10000 images to retrain the network. The training dataset consisted of driving on a 

highway under sunny weather conditions. The outlier dataset consisted of driving scenarios 

in an urban environment,  in thick fog and in tunnels. These use cases were defined along 

with the OEMs in the SMILE II project. The outlier scenario was run live in Pro-SiVIC 

with the captured images from the simulator’s sensors were sent to the neural network 

using OpenDDS. The neural network and the safety cage then produced the output shown 

on the screen. The below images show some of the sample frames from the dataset. The 

first set of images are from the training dataset and the second one is from the outlier 

scenario. The masks are in green when the safety cage accepts the classification result from 

the CNN and red when it rejects. The demonstrator was shown live at the Vehicle 

electronics & connected services (VECS) fair, 2019 in Gothenburg. A video version of the 

demonstrator can be found in https://youtu.be/M_1gD69-DTQ . 

 

https://youtu.be/M_1gD69-DTQ


 

 

 
Figure 6. Few sample frames from the training set of driving in a sunny highway 

 

 
Figure 7. Few frames from the outlier dataset of driving in an urban environment 

 

A simple study case for End-to-End behavior cloning was implemented using the tools 

provided by VictaLab. The platform provides a virtual representation of AstaZero’s Test 

Track with its 5.7 km rural road lane and for this simplified study no other vehicles or 

elements where part of the simulation. 

The machine learning model was implemented using the Keras framework and it was based 

on a simple structure with 5 convolutional layers as described in the following table: 

 

 

 



 

 

Layer (type) Output Shape Params Connected to 

normalization (Lambda) (None, 66, 200, 3) 0 Input 

convolution2d_1 
(Convolution2D) 

(None, 31, 98, 24) 1824 normalization 

convolution2d_2 
(Convolution2D) 

(None, 14, 47, 36) 21636 convolution2d_1 

convolution2d_3 
(Convolution2D) 

(None, 5, 22, 48) 43248 convolution2d_2 

convolution2d_4 
(Convolution2D) 

(None, 3, 20, 64) 27712 convolution2d_3 

convolution2d_5 
(Convolution2D) 

(None, 1, 18, 64) 36928 convolution2d_4 

flatten_1 (Flatten) (None, 1152) 0 convolution2d_5 

dense_1 (Dense) (None, 100) 115300 flatten_1 

dense_2 (Dense) (None, 50) 5050 dense_1 

dense_3 (Dense) (None, 10) 510 dense_2 

dense_4 (Dense) (None, 1) 11 dense_3 

 Total params 252219  

 

A video version of the demonstrator can be found in https://youtu.be/igRFIEGBpOg 

 

 

 

 

 

https://youtu.be/igRFIEGBpOg


 

 

Deliverables D3.1 Virtual Demonstrator & D3.2 Real-time Object Detection 

Demonstrator 

As explained above, the demonstrator from QRTECH involved an ego vehicle driven in a 

simulated environment using the tool Pro-SiVIC from ESI. A camera sensor was attached 

to the vehicle that captured the scene every few frames according to a defined fps 

parameter. A captured frame was then sent to the neural network and the safety cage using 

openDDS, a real time communication standard. The frame was segmented and classified 

objects in the image were shown with a mask that was green/red depending on the 

accept/reject result from the safety cage. The results were displayed live on another 

monitor. 

Deliverable D3.3 Virtual training data for demonstrator 

In the End-to-End model for cloning driving behaviors the input to the system was given 

by images collected from a single camera in front of the simulated vehicle whereas the 

output of the model will be a steering angle which will be used to control the vehicle in 

autonomous mode. A human driver would drive for 3 turns around the test track and the 

images collected during that time were downsampled to 360x160 pixels. In total more than 

6000 images were collected from a single driver, but after applying a horizontal mirroring 

to all of them a final augmented dataset of more than 12 thousand images was used for 

training the model. However, the images used for training the model were pre-processed 

to disregard the information from the sky and the lower part of the image, as shown in the 

samples below. The final dimensions of inputs to the convolutional neural network was 

360x80 pixels. 

 

 
Figure 8. Samples from the training dataset for the End-to-End driving behavior cloning. 

 

For the other demonstrators, training data sets were generated using the simulation platform 

Pro-SiVIC from ESI. As the creation of a complex traffic scenario is time consuming, we 

used python scripts to automate this process. There were several scenarios created - Driving 

in a sunny highway with and without traffic, driving in a tunnel, driving in fog and driving 

in a city environment. A camera sensor attached to one or more vehicle stored the captured 

frame as per the fps parameter, thus creating a data set for training and testing. 



 

 

Deliverable D3.4 Annotated perception training data 

As mentioned in the above deliverable D3.3, we used Pro-SiVIC to generate training data. 

Pro-SiVIC also provides an option to store pixel by pixel annotation of the image in a 

separate file. These were stored along with the camera capture to provide labels for training 

and testing. This is one of the biggest advantages of using a simulation platform such as 

Pro-SiVIC as real annotated images for the defined use cases are very difficult to generate 

or seldom found publicly available. Figure 9 below shows some of the sample images along 

with the label images. 

 

   
Figure 9. Few sample images generated using Pro-SiVIC along with pixel wise labels. 

 

Deliverable D3.5 Hardware for demonstrator 

VICTA Lab is a simulation lab that provides Startups, SME's and Researchers with 

resources needed to test and demonstrate new active safety and infotainment vehicle 

functions to fast-track the process of acquiring a top automotive client. The lab is hosted 

by Lindholmen Science Park and was founded by a joint effort by world leading Swedish 

firms Volvo Cars, Semcon AB, HiQ, VTI and RISE Viktoria. 

The real-time simulator is physically located in our premises at Lindholmen and works for 

both software and hardware components (so called Hardware and Model-in-the-loop), 

containing a virtual representation of a Volvo XC90 and a virtual representation of 

AstaZero’s Test Track. Controlling the vehicle can be done by a human driver using a 

physical interface as simple as the arrow keys on a keyboard to a full replica of the cockpit 

of a real vehicle. 



 

 

6.4 Results WP4 Project management 

SMILE II has been a truly collaborative project. The core team has met regularly, every 

2-3 weeks and in between used mail and SLACK for efficient communication. In total 

3700 messages were sent using SLACK. Figure 9 shows the activity of the different users 

on SLACK.  

 

 
Figure 9. Diagram of number of active members using SLACK for communication.  

 

The deliverables have been the status reports to Vinnova along with this final report.  

 

All deliverables and milestones have been accomplished.  Additional results from the 

project include e.g. invitations from external partners to join project proposals for e.g. 

EU-projects. We are currently awaiting evaluation results of the VALU3S project, where 

both RISE and QRTECH are partners. The project proposes, among other things,  to 

further develop and evaluate the safety cage concept and to develop explainable deep 

learning.  

 

Future planned work is e.g. LASH FIRE which is a H2020 project coordinated by RISE. 

RISE Viktoria’s part is to develop a vehicle identification system mounted on a drone. 

The drone is a safety critical system that we want to control in a narrow environment. 

Thus, the concept around the safety cage will be further elaborated upon in this context.  

 

Volvo cars just started a PhD project financed by Vinnova/FFI on the topic Safe 

Architectures for ML-based functions: “Architectural Design and Verification/Validation 

of Systems with Machine Learning Components”. 

 

 



 

 

7. Dissemination and publications 

7.1 Dissemination 

How are the project results planned to 
be used and disseminated?  

Mark 
with X 

Comment 

Increase knowledge in the field X 12 publications havbe been produced, 7 or which 
are peer-reviewd. One paper is awared for best 
paper at the SEAA conference 2019. 

Be passed on to other advanced 
technological development projects 

X 

Volvo is a partner in the AE project SHARPEN 
where one of the goals is to build a robust 
perception system that is able to handle adverse 
weather conditions. The results from SMILE II will 
be valuable input for the problem of detecting when 
the conditions are too bad for the neural networks 
used for perception to handle. 

Be passed on to product development 
projects 

  

Introduced on the market   

Used in investigations / regulatory / 
licensing / political decisions 

X There are many ongoing regulatory changes due to 
the advent of autonomous vehicles. In SMILE II, we 
have discussed our proposed safety cage approach 
in the light of the recently published embryo of a 
future safety standard that is planned to cover 
machine learning, i.e., ISO/PAS 21448. Also the 
draft version of the UL 4600 standard is highly 
relevant to SMILE II. 

 

7.2 Publications 

M. Borg. Explainability First! Cousteauing the Depths of Neural Networks to Argue Safety. In 
Explainable Software for Cyber-Physical Systems (ES4CPS), Report from the GI Dagstuhl 
Seminar 19023, pp. 26-27, 2019. 
 
M. Borg, C. Englund, K. Wnuk, B. Duran, C. Levandowski, S. Gao, Y. Tan, H. Kaijser, H. Lönn, 
and J. Törnqvist. Safely Entering the Deep: A Review of Verification and Validation for Machine 
Learning and a Challenge Elicitation in the Automotive Industry, Journal of Automotive 
Software Engineering, 1(1), pp. 1-19, 2019. (Borg et al., 2019a) 
 
M. Borg, S. Gerasimou, N. Hochgeschwender, and N. Khakpour. Explainability for Safety and 
Security. In Explainable Software for Cyber-Physical Systems (ES4CPS), Report from the GI 
Dagstuhl Seminar 19023, pp. 15-18, 2019. (Borg et al., 2019b) 

 



 

 

J. Henriksson, C. Berger, M. Borg, L. Tornberg, C. Englund, S. Sathyamoorthy, and S. Ursing. 
Towards Structured Evaluation of Deep Neural Network Supervisors, In Proc. of the 1st IEEE 
International Conference on Artificial Intelligence Testing (AITest), pp. 27-34, 2019. 
(Henriksson et al., 2019a) 
 
J. Henriksson, C. Berger, M. Borg, L. Tornberg, S. Sathyamoorthy, and C. Englund. Performance 
Analysis of Out-of-Distribution Detection on Various Trained Neural Networks, To appear in 
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Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS), 2018. 
 
E. Kratz, B. Duran, C. Englund. Novel Scenario Detection in Road Traffic Images. Prepared for 
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AD/ADAS 
          
Abdallah Alabdallah: Thesis Report, Human Understandable Interpretation of Deep Neural 
Networks Decisions Using Generative Models, 2019. 
     
Erik Kratz. Novel scenario detection in road traffic images. Examensarbete - Institutionen för 
elektroteknik, Chalmers tekniska högskola. 2019. https://hdl.handle.net/20.500.12380/256655  
(E. Kratz 2019b) 
   
S. Gao and Y. Tan. Paving the Way for Self-driving Cars - Software Testing for Safety-critical 
Systems Based on Machine Learning: A Systematic Mapping Study and a Survey, MSc thesis, 
Blekinge Institute of Technology, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15681  
 

 

8. Conclusions and future research 

This project has explored and investigated approaches to detect out of distribution data in 

high dimensional data (high resolution color images). Two main ideas were developed. 

The first approach is an autoencoder that trains a neural network to replicate the input 

image on its output layer. The network compresses the image into a sub-space, and then 

tries to reconstruct the image. The idea is to tune the network to the known input data 

which should make the network able to reconstruct known images with a lower 

reconstruction error and conversely reconstructing unknown images should lead to a 

higher reconstruction error. 

 

The second approach relies on a probing methodology that performs  statistical analysis 

on the activations of neurons in a CNN. From the analysis a threshold was set for various 

http://mrksbrg.com/aitest-henriksson19/
https://hdl.handle.net/20.500.12380/256655
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15681


 

 

classes to accept/reject the prediction from the neural network. Both methods are working 

and give promising results. 

 

These results contribute to the first research question: “What possible methods are 

available to guarantee safety in ML-based algorithms for safety critical vehicular 

systems?” and are described in papers Henriksson 2019a, 2019b, Kratz 2019a.  

 

Early in the project we also worked on the second and third question: “Within what 

areas/systems is ML required?” and “What are the requirements of those systems?” 

While objects in the traffic environment have a large variety of size, shape, color etc. it is 

infeasible to design detectable patterns at design time, and therefore ML-based systems 

are preferable for traffic applications. The requirements are also difficult to formulate at 

design time, thus, using training data instead of requirements is a viable solution. These 

questions are also adressed in paper Borg 2019, 2019a, 2019b, Vogelsang 2019. 

 

The fourth research question: “Are there any obstacles for the introduction of DL in 

safety critical systems?”  was dealt with in several papers Borg 2019a and Vogelsang. 

Generally, the problem is that the ML-based software does not comply with the ISO 

26262 standard and the ISO/PAS SOTIF is not yet defined.  

 

The fifth research question: “How can we create viable paths forward and what future 

concepts should be evaluated to show that the safety is achieved and maintained in safety 

critical systems?” was the main topic in Henriksson 2019a and 2019b. Where we present 

metrics and tools for comparing the performance of the safety cage concepts.  

 

Finally, we have worked with data of various types; synthetic, small scale, large scale, 

toy-data, simulated data and real-world data, to develop and test our methods. The 

demonstrators, end-to-end perception and control model in VICTA LAB, and the safety 

cage in Pro-SiVIC, that were performed used simulated data mainly due to the 

availability of  pixel by pixel annotation. 

 

Discussion 

The project has had a good mix of researchers involved; one industrial PhD who have had 

large support from the project team and several papers have been published. Vehicle 

OEMs have generally provided valuable feedback on the overall work, nevertheless, they 

have been deeply involved in the research around the safety cage. Internationally there is 

a huge interest in this topic. We have presented our work in several conferences and we 

have received numerous invitations to give talks based on our research topic.  

 

Future work includes  studies in architectural design e.g. architectural strategy to design 

the safety cage system in order to answer questions like what components should be 



 

 

encapsulated? Should it include other sensors than cameras (radar, lidar,etc.)? Should it 

also include other systems  such as engine, driveline etc?  

Another topic to include in continuation of SMILE is Safety strategy e.g. study decision 

making, what to do when model does not recognize data and to develop the safety-cage in 

light of the ISO/PAS 21448 SOTIF. Another more technical topic is the safety-cage 

design and optimization and elaborate on  complementary safety-cage solutions and to 

develop strategies to cope with data that was rejected by the safety cage. How should the 

system correct for a miss-classification? Strategy to update the model should also be 

elaborated upon. While working with the development of the safety cage, also 

incorporating methodologies for automatic testing during development and combine with 

automatic performance monitoring at run-time can improve efficiency. This also relates 

to strategies validation after retraining of functionality. Outcomes of the validation can 

provide answers to how much easier is it to test the final solution while using a safety 

cage? Finally, when the technology is mature enough, demonstrate the proposed system 

in a real-world environment.   
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