

Författare: Karl Meinke (KTH Stockholm) , Andreas Rasmusson (Scania)
Datum: 2017-09-28
Projekt inom FFI delprogrammet Trafiksäkerhet och automatiserade fordon

Virtualised Embedded Systems for
Testing and Development

(VIRTUES)

 FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 2

Innehållsförteckning

1 Sammanfattning .. 3

2 Executive summary in English .. 3

3 Bakgrund ... 3

4 Syfte, forskningsfrågor och metod ... 4

5 Mål .. 4

6 Resultat och måluppfyllelse .. 6

7 Spridning och publicering ... 11

7.1 Kunskaps- och resultatspridning .. 11

7.2 Publikationer .. 12

8 Slutsatser och fortsatt forskning .. 12

9 Deltagande parter och kontaktpersoner ... 13

Kort om FFI
FFI är ett samarbete mellan staten och fordonsindustrin om att gemensamt finansiera forsknings- och
innovationsaktviteter med fokus på områdena Klimat & Miljö samt Trafiksäkerhet. Satsningen innebär verksamhet
för ca 1 miljard kr per år varav de offentliga medlen utgör drygt 400 Mkr.

För närvarande finns fem delprogram; Energi & Miljö, Trafiksäkerhet och automatiserade fordon, Elektronik,
mjukvara och kommunikation, Hållbar produktion och Effektiva och uppkopplade transportsystem. Läs mer på

. www.vinnova.se/ffi

 FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 3

1 Sammanfattning
I fordonsbranchen används idag i stor omfattning s.k
hardware-in-the-loop (HIL) testning för att på ett tillförlitligt sätt
testa distribuerade elektronik-system, häri även innefattande de
inbyggda systemens mjukvara. Dock är HIL-riggar en knapp och
underhållskrävande resurs. Både mjukvaru-utveckling och
mjukvaru-testning kan förenklas och effektiviseras genom att arbeta
med en virtualiserad HIL-rigg (VHIL). Detta öppnar upp möjligheter
att köra massivt parallella tester på data-servrar i molnet eller på
arbetsstationer som utnyttjar multi-core teknologi.

Projektet VIRTUES, ett samarbete mellan Scania CV och KTH över 3.5 år,
har utrett frågeställningar kring virtualiserad testning av embedded-mjukvara
som kör på virtuell hårdvara. Inom projektet har det utvecklats
mjukvaruutvecklingsverktyg för att använda maskin-inlärningsstödd
testfallsgenerering och även en virtuell-hårdvaruplattform. Dessa
verktyg har kopplats samman och då använts i fall-studier rörande
testning utifrån formella krav samt i felinjiceringstester. Mjukvaran
som testats är faktisk automotive-mjukvara från ECU:er.

Vi uppskattar att minst 90% av den mjukvarutestning som idag utförs på
HIL-riggar kan, med lika god tillförlitlighet, överföras till en
VHIL-rigg, och därigenom spara kostnader samt frigöra HIL-riggarna till
mer renodlade utforskande elektriska experiment.

2 Executive summary in English
In the automotive industry, realistic tests of distributed electronic systems, including embedded software,
are today executed using hardware-in-the-loop (HIL) testing. However, the necessary HIL rigs are a limited
resource. Both testing and software development could be simplified by working with a virtualised HIL rig
(VHIL). This could give testers the possibility to execute massively parallel test suites, using less
expensive multicore technology.

The VIRTUES project has been conducted over 3.5 years between Scania CV and KTH to investigate this
hypothesis. The project has developed new software engineering tools that support machine-learning
assisted test case generation, as well as virtualised hardware emulation. These tools have been integrated
together. The resulting platform has been succesfully applied to requirements and fault injection testing of
automotive ECU applications.

We estimate that 90% of the activities carried out on a HIL-rig today could be transferred to this VHIL rig, if
it were to be productized.

3 Bakgrund
In the automotive industry, realistic tests of distributed electronic systems, including embedded
software, are today executed using hardware-in-the-loop (aka. HIL rig) testing. However, the
necessary HIL rigs are a limited resource. Both testing and software development could be
simplified by working with a virtualized emulation environment. This could give testers the
possibility to execute massively parallel test suites, using less expensive multicore technology.

 FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 4

Large-scale parallel testing requires that the Swedish automotive industry supplement today's
manually designed test suites with larger automatically generated test suites.

4 Syfte, forskningsfrågor och metod

Since 2009, KTH-CSC has carried out research into automated requirements-driven test case
generation. Previous KTH-CSC collaboration with the automotive industry (Volvo) supports the
hypothesis that our test technology would be highly suitable to automate large scale parallel
testing within a virtualized environment.

New research has been necessary to arrive at four goals: (1) a multi-ECU simulation
environment, (2) a virtualised HIL-rig, (3) an integrated automated parallel testing toolset, and
(4) case studies of the costs/benefits of using the integrated virtualisation and testing platform
for developing new and existing systems. The end-users will be embedded software developers
and software testers in general.

5 Mål
In our original proposal, the project activities were divided into 3 main tracks:

1. the ECU Simulation Platform,
2. the Virtualised HIL rig,
3. the Testing Platform.

Below we describe the main goals within each track.

Project Track 1: The ECU-simulation Platform
Project Track 1 considers the implementation and evaluation of the instruction set simulation
platform itself. The simulation platform is required input to the HIL-virtualisation and testing
tracks. To reduce technical risk in the project, this track will deliver increasingly capable
simulators that the other tracks can use from early on.

AP 1.1 Development of new instruction set single-ECU simulation platform
In order to go beyond today's focus on application level functional requirements, it is necessary
to be able to more closely simulate the effects of executing on a particular microcontroller. We
will investigate how to exploit state-of-the-art instruction-set-simulation technology and if it is
feasible to run a completely unmodified binary version of the real production software from a
real ECU.

We will survey the current state-of-the-art of ready-to-use instruction-set-simulation
technologies with sufficient support for the hardware we intend to virtualise, and select one
platform for further development of hardware models. We will investigate strategies for how to
incrementally develop the required custom hardware models.

AP 1.2 Development of new multi-ECU simulation platform
To test multi-ECU scenarios, a simulation comprised of several, simultaneously executing ECUs
will be setup. Since the simulation is more complex, consideration must be given to if and how
the simulation can be partitioned over several cores or several computers.

We will identify some real-life scenarios where a function on the truck is realised by several
cooperating ECUs and will set up a virtual platform where these ECUs are executing as a single
simulation.

We intend to create both a functional level multi-ECU simulation as well as an instruction-set-
simulation based variant of it.

 FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 5

The latter variant was not completed since we deemed that it would not enable enough
interesting experiments for the effort needed. In the multi-ECU experiments, below, we have
used instead, either the single-ECU instruction set simulator or the functional-level multi-ECU
simulator.

Project Track 2: Using the Virtualised HIL-rig
Using the virtualized hardware developed in Track 1 we will modify the test-framework used to
configure the HIL-rigs and run HIL-tests to be able to use virtual hardware instead of HIL-rigs.
This opens up the possibility for test-developers to have a "HIL-rig" on their desktop for parallel
test case development and also for parallel regression testing of existing test cases.

AP 2.1 Virtualisation of HIL-rig test frameworks with complex environment
models and auxiliary hardware
For a fully virtualized solution, we need to carefully investigate which parts of the HIL-rig
software that are affected and where to modify them. Many of the issues/design consequences
discovered here will be relevant for the general task of virtualising hardware rigs and/or when
designing new hardware rigs with later virtualization in mind.

AP 2.2. Extending a Virtualised HIL-rig with Capabilities beyond the HIL-
rig
Compared to functional-level simulations, the instruction-set simulator developed in Track 1 lets
us control and observe more aspects of the execution, e.g. fault-injection, resource usage and
(to some extent) execution time. Now, certain non-functional behaviours that could previously
only be observed in the rig will be reproducible. Even some behaviours that are not testable in
the hardware rig will be possible to verify using the simulator.

We will provide new ways for the test-framework to control the simulation and we will investigate
how our testing standards and practices can be improved by using these new methods.

Project Track 3: The Testing Platform

AP 3.1. Requirements Testing of ECUs and Systems
As a part of automated requirements testing, verdict construction necessitates that user
requirements must be precisely modeled using a requirements modeling language. KTH will
collaborate with Scania engineers to understand how, when and why to make precise user
requirements models.

AP 3.2 Integration of Test Automation with Test and Emulation Platforms
This work-package deals with technical integration of the KTH test toolset into the Virtual HIL-rig
and the new simulation environment, exploiting new observability options.

AP 3.3. Case Studies in Unit, Integration and System Testing
Two central questions of research track 2 are: (i) how to apply automated requirements testing
within Scania, and (ii) what are the costs and benefits of this? We feel these questions are best
answered empirically by performing testing studies on many significant components and
subsystems. We need to understand how cost/benefit varies between different products.

AP 3.4 Test Tool Optimisation
It will be important to understand the current limitations of the KTH test toolset and how these
can be overcome. Machine learning and model checking (the core technologies in the KTH test

 FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 6

toolset) are rapidly evolving technologies that we need to exploit. Optimisation of the tools will
be focused on meeting the performance needs indicated by automotive case studies (AP 3.3).

AP 3.5. Parallel Testing on Multicore Platforms
One of the main motivations for moving to emulator technology for the automotive industry is
the possibility to create multiple virtual test platforms using inexpensive multicore computing
hardware. This opens up the possibility to perform large-scale testing in parallel. We anticipate
up to 200 processors in our own research. Multiprocessor technology seems also necessary in
the future to perform multi-vehicle simulations needed for testing systems-of-systems, e.g.
platooning functions.

6 Resultat och måluppfyllelse

Project Track 1: The ECU-simulation Platform

AP 1.1 Development of new instruction set single-ECU simulation platform

We surveyed the state-of-the-art in instruction set simulation suitable for our hardware and use-
case. As a result we chose to base the implementation of our platform on the open source
project QEmu to maximize our ability to experiment with parallel and distributed execution and
avoid licensing and code-availability bottlenecks.

QEmu has one CPU-model that is sufficiently similar to our hardware, but no models of the
peripheral hardware.There exist a handful commercial products who provide models of not
just the CPU, but the entire microcontroller-circuit (MCU). However, for our proprietary ECU, a
custom model of its additional peripheral hardware, will eventually have to be created anyway.

Since the ECU-software we intended to run was already developed and its assumptions about
the execution environment are fixed, we could settle for implementing models of only the
hardware actually used by the ECU-software.

In addition to implementation of hardware models we had to make a few modifications to the
base platform QEmu. We corrected a few bugs that we reported back to the Open source
project. We also added support for a new input format that we could base on work done
elsewhere in the QEmu open source community.

Throughout the implementation we could use the simulator's built in debugger support to
selectively bypass parts of the application whose hardware interaction we had not yet modelled.
This was quite helpful since we could then implement the hardware model in increments.

Incrementally more capable versions of the platform were provided for use in the case studies in
AP3.3. Feedback of the needs of AP3.3 guided how the priorities were set for the incremental
deliveries.

We used the debugger as the interface for interacting with the ECU-software in a way that did
not require any inspection support in the ECU-software itself. This is crucial in order to provide a
virtualization platform that does not interfere with the ability to re-architect the ECU-software.

The integration of the platform with LBTest in AP3.2 is based on the scripting via the debugger-
interface. This method gives the integrator great power when, in the wrapper code, the meaning
of the formal requirements is to be translated into stimuli to and response from the platform.
Advanced debugger features, such as conditional breakpoints and breakpoints that trigger side-
effects can be used.

We estimate that 90% of the activities carried out on a HIL-rig today could be transferred to this
VHIL rig, if it was productized. In a real world software development use-case, where the ECU-

 FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 7

software evolves over time, it is necessary to modify the simulator platform and base it on a
commercial product with a model of the entire microcontroller. Arguably, it would make most
sense if the circuit-manufacturer provides or recommends a model of the circuits it
manufactures.

1.2 Development of new multi-ECU simulation platform

The ECU:s on the truck are relatively loosely coupled in that they (mostly) communicate via
message passing on a CAN-bus. This is an opportunity for parallelizing the multi-ECU
simulation, at the expense of the risk of introducing non-determinism and imperfect
reproducibility. In our use-case we did not need to consider more tightly coupled simulations of
e.g multi-core cpu:s or parallel simulation of tightly coupled dynamical systems.

We have implemented a synchronous multi-ECU simulation that is used internally as Scania
and it is sufficient to reproduce many behaviours we need to test. It is not as fast as a parallel
version could be, in theory.

A Master's Thesis was started in order to investigate techniques for parallelization of
simulations, e.g. DynamicTimeWarping algorithms. The this work was not finished, and did only
produce tentative results.

We have cooperated with the project "Virtual Truck & Bus"(Energimyndigheten, Dnr: 2014-
007465) at Scania. We can use their multi-ECU simulation platform and we have implemented
components for that platform. It makes sense to cooperate on their platform for more coarse
grained simulation of large scale system behaviours.

This platform was experimented on in AP3.3 has not yet resulted in any publishable results, in
part due to resource-availability, and side-channel issues as discussed in AP2.1 below.

Simulation of the detailed behaviour at instruction-set level is crucial to reproduce behaviours
from scenarios concerning e.g. multi-core or hardware fault-injection, and is where we
subsequently focused our efforts in AP3.3. Hence, in this AP, we did not pursue the
implementation of a multi-ECU version based on co-simulated instruction-set simulators.

Project Track 2: Using the Virtualised HIL-rig

AP 2.1 Virtualisation of HIL-rig test frameworks with complex environment
models and auxiliary hardware

In order to build a complete virtual replica of a HIL-rig, we need to virtualise also the
environment-components of the HIL-rig. Here we investigated issues we ran into when we
attempted to virtualise a HIL-rig in use at Scania.

Depending on use-case, the ECU's external environment in a HIL-rig can be quite complex, not
only its behaviour, but also in the mechanisms and shortcuts used to build the HIL-rig. We
selected a use-case where we avoided tightly coupled dynamical models (i.e. control-loops), but
still there are a few interesting observations we can make.

In a HIL-rig, it is in some cases convenient to simply use a hardware component instead of a
model its behaviour. For example, the ECU might interact cryptographically with 3rd party
hardware. Also, one may want to encourage ad-hoc testing by providing a real steering wheel
etc.

 FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 8

In a HIL-rig the emphasis is mainly on being able to produce as many behaviours as possible.
This is in contrast to being able to exactly reproduce each of the (possibly fewer) behaviours in
a setup with models instead of hardware as the environment. Thus, being able to observe
something e.g. "occasionally, on the average once a day" is counted as a "win" for the HIL-rig
testers, although maybe not so much so for the engineers subsequently trying to pin-point the
bug.

If we require complete reproducibility there needs to be a single clock responsible for stepping
the system. In our HIL-rig some of the configuration tools interact with the HIL-rig on a side-
channel parallel to the simulation. All such side channels need to be engineered away.

The tools interacting with a HIL-rig might also use components that happen to limit how many
simulations that can be run in parallel. Some tools may have licensing restrictions or they may
use limited resources in the operating system kernel, e.g. resource limited device drivers.

As a concrete proof-of-concept, we set up a simulation, where the environment-model software
from a HIL-rig was connected to the virtual ECU to produce a richer execution environment for
the virtual ECU. Actually solving most of the technical hurdles observed above will have to be
done in subsequent projects.

AP 2.2. Extending a Virtualised HIL-rig with Capabilities beyond the HIL-
rig

In an instruction set simulation we have many new ways to monitor and interact with the
software. We can chose to interact with the simulation on two levels; the guest-level which is the
execution of the code on the simulated CPU, and on the host-level, which is the level were the
hardware-models are implemented and which runs on the workstation's CPU.

Instead of designing a fixed API for interacting with the simulation, we instead interact
programatically via a debugger-interface at either guest- or host-level (or both!). This gives us
essentially total control and observability of the simulation, and also ensures that the guest
program in no way has to provide architectural support for testing or debugging.

Compared to the functional specification expressed in source code, we take as input the true
binary realisation of the ECU-software. For this reason we can faithfully reproduce behaviours
that depend on memory-layout, e.g. bit-flip effects, stack-overflows, wild-pointers, interrupts.
This faithfulness was the basis for a fault-injection use-case AP3.3. However, keep in mind that
the binary realisation will lack representation of design invariants from the functional level, e.g.
data types. So both levels have distinct useful aspects.

On the other end, compared to real hardware we are able to monitor things that the real
hardware cannot inform us about, e.g. that the software configures the hardware in a correct
manner according to some external safety guidelines.

We are also not subject to resource limitations in the hardware's debugging support, e.g. how
many simultaneous break-points that can be active or data-transfer-rates between target-
hardware and the debugger.

There are commercial ISS-platforms, (not QEmu) where the simulation can be run backwards.
A fault can then be located, quite conveniently, by simply starting out from its observed failure
and then execute backwards.

Some feedback from the wrapper-program development of AP3.3 was that, naturally, the more
we instrument the simulation, the more the simulation will be slowed down. This is not a big
problem in our main use-case where tests against the simulations is done as batch-jobs on
server farms, but it will affect if and how the simulation is useful for ad-hoc tests, for test-
development and for interaction with physical hardware.

 FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 9

Having a systematic way to switch between different simulation granularities at different times
should be required in a platform, if it is to be used also interactively by humans. QEmu has no
such infrastructure in place.

Project Track 3: The Testing Platform
AP 3.1. Requirements Testing of ECUs and Systems
A thorough literature survey of formal modeling languages for safety requirements modeling of
real-time embedded automotive applications was performed very early on in the project. In
particular, previous research results from Scania and Robert Bosch Gmbh in this field were
useful. Potential relevance to emerging ISO 26262 issues, such as traceability of safety cases,
were also considered.

This literature survey arrived at a number of pattern languages and visual requirements modeling
languages (state transition diagrams). The advantages and disadvantages of these from a
testing perspective have been described in the conference publication [2]. This requirements
modeling research has continued within our new KTH research projects such as EU ECSEL
project SafeCOP and KTH project STaRT.

AP 3.2 Integration of Test Automation with Test and Emulation Platforms
LBTest was integrated with the Scania test execution platform WinComP very early in the
project. This tool integration then supported many early case studies in unit testing (see 3.3
below). LBTest was also successfully integrated with QEMU and GDB by a PhD student, and
could be used to perform case studies in virtualized hardware fault injection. The combined
virtualized fault injection test platform is described in the technical report [10] that will be
submitted for conference publication. A pre-study of communication fault injection for distributed
software architectures using LBTest is described in the conference publication [5].

AP 3.3. Case Studies in Unit, Integration and System Testing
There was a strong emphasis in the project on unit testing. However, this was supplemented with
external case studies (from current and previous KTH research projects) on integration and
system testing, even up to the level of cyber-physical systems-of-systems (vehicle platoons). For
unit testing, three case studies were considered: an engine start application (ESTA), a dual
circuit steering application (DCS), and a fuel level display application (FLD). All three were actual
production components, and collectively were representative of many testing situations and
issues at Scania. Especially FLD had a strong pedagogical aspect, since the case study was
previously shared among other Scania projects.

2 Masters and 1 PhD student carried out these case studies, supervised by KTH and Scania
staff. The KPIs focused on to measure the performance of LBTest were mainly: (1) the difficulty
of identifying and modeling product safety requirements, (2) the difficulty of performing full
coverage testing with LBTest, (3) the success rate in identifying bugs and (4) a comparison of the
effectiveness of LBTest with an in-house product testing environment. The successful
performance of LBTest under all these headings was reported in a conference publication [2] and
an extended journal publication is currently under revision [9].

For integration and system testing a brake-by-wire application and a platooning simulator were
considered. LBTest proved itself to be scalable to much larger problems when tool optimization
and improvements had been completed (see 3.4 and 3.5 below). The results of this work appear
in the conference publication [1].

AP 3.4 Test Tool Optimisation
The test tool LBTest has been optimized in a variety of ways to improve both performance and
usability. For better usability, a command line version of the tool was produced for seamless

 FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 10

integration with QEMU and GDB. To improve performance, we have introduced learning
algorithms for non-deterministic automata that give better model compression and higher test
coverage. We have introduced learning algorithms that can exploit powerful multi-core
architectures (see AP 3.5 below). We have considered a tightly integrated explicit-state model
checker to give faster more scalable performance on complex testing tasks, and extended bug
discovery. Arising from observed future needs, to consider environmental and road dynamic
modeling, we have recently initiated a new KTH project STaRT (joint with KTH-CSC Robotics
department) to study model checking for spatio-temporal logics. Some of these improvements
have been described with benchmarking results in publication [6].

AP 3.5. Parallel Testing on Multicore Platforms
A parallelized machine-learning algorithm has been developed which is able to exploit the power
of a multicore test execution platform. This was benchmarked on a high-latency multi-ECU
testing problem (a platooning simulator). On a 4-core machine, the algorithm gave about 3-times
speed-up compared with a sequential learning algorithm. Total processor usage level could
exceed 98%, which showed that effective use of multicore processing power was possible, and
that our solution could usefully scale to larger core numbers. The results have been published at
EPEW-2017 [1].

 FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 11

7 Spridning och publicering

7.1 Kunskaps- och resultatspridning

Hur har/planeras projektresultatet att
användas och spridas?

Markera
med X

Kommentar

Öka kunskapen inom området X (1) KTH has organised Schloss Dagstuhl
Workshop 16172, Machine Learning for
Dynamic Software Analysis: Potentials
and Limits, with Open University
(Bennaceur), TU Darmstadt (Hähnle) and
NASA Ames (Giannakopoulou). This leads
to the first published textbook on this
subject.

(2) KTH has organised the special track
Machine-Learning in Software Products
and Learning-Based Analysis of Software
Systems with Uni Dortmund (Howar) and
Clausthal University of Technology
(Rausch) at ISoLA 2016 conference

(3) KTH has a STINT joint Japan – Sweden
collaboration proposal in Software
Construction with Machine Learning
(pending)

(4) KTH has presented VIRTUES results at
international conferences and workshops
including EPEW, IMBSA, ISoLA, SEFM.

(5) KTH and Scania have presented results at
national conferences such as: EiF 2016,
Swedsoft STEW 2017, KTH-ICES annual
conference 2016, Vehicle ICT Arena
Innovation Bazaar 2017,

(6) KTH has presented VIRTUES results at 2
Scania Research Open Days, and 1
Scania-KTH ICES workshop (ReVamp)

(7) PhD student H. Khosrowjerdi is preparing
his Licentiate thesis at KTH.

Föras vidare till andra avancerade
tekniska utvecklingsprojekt

X KTH continues VIRTUES research ideas in 2
projects

(1) KTH-ICT project Spatio-‐Temporal	
Planning	 at	 Run	 Time	 (STaRT)

(2) EU ECSEL project Safe Co-operating
Cyber Physical Systems using Wireless
Communication (SafeCOP).

KTH and Scania plan for an FFI continuation
project.

Föras vidare till
produktutvecklingsprojekt

Introduceras på marknaden KTH (Meinke) is in discussions with KTH Innovation
regarding possible commercialisation of the LBTest
tool

Användas i utredningar/regelverk/
tillståndsärenden/ politiska beslut

 FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 12

7.2 Publikationer
1. K. Meinke: Learning-Based Testing of Cyber-Physical Systems-of-Systems: A Platooning Study,
Proc. EPEW 2017, pp135-151, LNCS 10497, Springer Verlag, 2017.
2. H. Khosrowjerdi, K. Meinke, A Rasmusson: Learning-Based Testing for Safety Critical Automotive
Applications, Proc. IMBSA 2017, pp 197-211, LNCS 10437, Springer Verlag, 2017.
3. Falk Howar, Karl Meinke, Andreas Rausch: Learning Systems: Machine-Learning in Software
Products and Learning-Based Analysis of Software Systems, Special Track at ISoLA 2016. ISoLA (2)
2016: pp 651-654, LNCS 9953, Springer Verlag, 2016.
4. Amel Bennaceur, Dimitra Giannakopoulou, Reiner Hähnle, Karl Meinke: Machine Learning for
Dynamic Software Analysis: Potentials and Limits, (Dagstuhl Seminar 16172). Dagstuhl Reports 6(4):
pp 161-173 (2016)
5. K. Meinke, P. Nycander: Learning-Based Testing of Distributed Microservice Architectures:
Correctness and Fault Injection. Proc. SEFM Workshops 2015: pp 3-10, LNCS 9509, Springer Verlag,
2015.

Unpublished material in preparation
6. K. Meinke, Recent Progress in Learning-based Testing, to appear in: A. Bennaceur, R. Hähnle, K.
Meinke (eds), Machine Learning for Dynamic Software Analysis: Potentials and Limits, Springer
Verlag.
7. A. Bennaceur, K. Meinke, Introduction to Machine Learning for Software Analysis, to appear in: A.
Bennaceur, R. Hähnle, K. Meinke (eds), Machine Learning for Dynamic Software Analysis: Potentials
and Limits, Springer Verlag.
8. Proceedings of Dagstuhl Workshop 16172 Machine Learning for Dynamic Software Analysis:
Potentials and Limits, A. Bennaceur, R. Hähnle, K. Meinke (editors) Springer Verlag, to appear
9. Automated Behavioral Requirements Testing for Automotive ECU Applications” submitted to the
Journal of Software Testing, Verification and Reliability.
10. H. Khosrowjerdi, K. Meinke, A Rasmusson, Virtualized-Fault Injection with Learning-based
Requirements Testing, in preparation.

.

8 Slutsatser och fortsatt forskning
The VIRTUES project has delivered validated tools and use-cases that convincingly demonstrate the
advantages of automated requirements testing and fault injection testing in an automotive context.

The advantages of the VIRTUES approach have been demonstrated, such as lowered cost of
equipment, flexibility and agility of approach, reliable and rigorous test results, and higher test
coverage. Furthermore, we have shown that our techniques scale up to significant problem sizes,
although further work is possible to extend scalability even further.

The advantages of our approach all contribute towards reduced development costs, higher product
reliability, and shorter product development times. In the context of emerging autonomous driving
software, we feel these advantages will be attractive for commercial exploitation. The more software-
related behaviour we can simulate virtually, the more will the use of HIL-rig testing change from
detecting faults in the ECU-software into simply validating that the hardware-models faithfully describe
the actual hardware. In the limit (ideally) the reliance on HIL-rigs for software development will be
greatly decreased.

With all new possibilities to observe and interact with the system under test, the more important will it
be to produce test-cases intelligently, in order not to create a huge, unmaintainable test-suite. Test
generation from more abstract descriptions, as exemplified by LBTest, seems to be a quite promising
way forward here. For example, the quite high-level requirement from AP3.3 that "a bit-flip in a check-
sum protected memory area shall area lead to a system restart" can be implemented quite concisely
and still produce surprising behaviours, induced by the concrete memory layout.

 FFI Fordonsstrategisk Forskning och Innovation | www.vinnova.se/ffi 13

The results of the VIRTUES project are already being exploited within the EU projects SafeCOP
(ECSEL) and TESTOMAT (ITEA), and we anticipate that a continuation project between KTH and
Scania will emerge in the future. By building on the execution platform produced in this project, there
are many interesting next steps that we might explore. It may also be possible to combine this future
work with other related Scania research projects such as ReVamp and Virtual Truck and Bus.

9 Deltagande parter och kontaktpersoner

Professor Karl Meinke (BSc, PhD) , School of Computer Science and Communications (CSC)
KTH Stockholm, karlm@kth.se.

Andreas Rasmusson (MSc, Senior Engineer), Scania CV AB, andreas.rasmusson@scania.com

