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The evolution of automotive systems has been rapid. Nowadays, electronic brains control dozens of functions in vehicles, like
braking, cruising, etc. Model-based design approaches, in environments such as MATLAB Simulink, seem to help in addressing
the ever-increasing need to enhance quality, and manage complexity, by supporting functional design from a set of block
libraries, which can be simulated and analyzed for hidden errors, but also used for code generation. For this reason, providing
assurance that Simulink models fulfill given functional and timing requirements is desirable. In this paper, we propose a
pattern-based, execution-order preserving automatic transformation of atomic and composite Simulink blocks into stochastic
timed automata that can then be formally analyzed with Uppaal Statistical Model Checker (Uppaal SMC). Our method is
supported by the Simppaal tool, which we introduce and apply on an industrial prototype called the Brake-by-Wire system.
This work enables the formal analysis of industrial Simulink models, by automatically generating stochastic timed automata
counterpart.
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1 INTRODUCTION AND MOTIVATION
The current trend in automotive systems is to replace mechanical components with electronic ones (e.g. in drive-
by-wire). The resulting software-based control systems exhibit high complexity and are difficult to analyze/verify.
Indeed, such systems are safety-critical, and need be developed under standards like ISO26262 [1], in order to
provide guarantees (and evidence) that safe operation is assured.
To achieve some form of assurance with respect to safety-critical requirements, as well as valuable design

insight,model-based design enables industry to create executable specifications in the form of Simulink [8] models
that can be simulated and formally analyzed [5] to detect hidden design errors and requirements violations.
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Analyzing Simulink models formally has been a research target for a while now. Existing work [4, 16, 17] provides
solutions based on (stochastic) hybrid automata, extended finite automata etc., yet no integrated framework exists,
which could serve as a basis for an automated tool support applicable to complex industrial Simulink models.
To address this gap, in this paper, we introduce a pattern-based approach (Section 3) that captures formally
the behaviors of Simulink blocks, as networks of stochastic timed automata, and report our experience from
analyzing an industrial system, with Uppaal SMC (Statistical Model Checker) [10] (Section 5). Our use case,
that is, the Brake-by-Wire (BBW) prototype comes from Volvo Group Trucks Technology (VGTT), Sweden, a
well-known truck manufacturer.

We classify the Simulink blocks into atomic (basic computational units) and composite (hierarchical structures
which functionality is realized though set of atomic blocks) blocks. Further, we separate the former into discrete-

time and continuous-time blocks, depending on whether a given sample time is used in the simulation or not. In
order to be able to reason about such blocks, we propose a generic tuple definition.The definition captures the
functionality of an atomic Simulink block as a blockRoutine() that updates the state variables, after which it
produces an output observable at particular time instances defined as a multiple of the block’s sample time (in case
of discrete blocks), or continually observable in case of a continuous block. Next, we define the semantics of the
Simulink blocks in terms of timed transition systems, and we provide a proof of soundness of the transformation
into particular stochastic timed automata, by showing that the atomic Simulink block refines our proposed
stochastic patterns, in the discrete-time case. In cases when the Simulink model contains continuous-time blocks,
the soundness resorts to comparing simulation traces generated by simulating the Simulink and Uppaal SMC
models, respectively. A crucial aspect of the Simulink to stochastic timed automata transformation is preservation
of the correct execution order of the Simulink blocks, both at the system and subsystem level. We do this by
introducing a flattening algorithm that removes the hierarchy from Simulink models by capturing only the
execution order of the blocks called sorted order list, as computed by the Simulink simulation engine at the
beginning of the simulation.
The crux of our method is twofold: (i) the transformation relies on transformation patterns, which eases the

modeling process while preserving the execution semantics of Simulink blocks, and (ii) verifying the encodings
of the Simulink blocks behaviors as C routines in Uppaal, with the program verifier Dafny [18]. To be able to
apply our approach on the selected BBW industrial use case, we also provide a tool called Simppaal that takes
as input the Simulink model together with the sorted list and automatically generates the formal model to be
statistically model checked. Our endeavor is justified by the industrial needs of ensuring correctness with respect
to both functional and timing behaviors of the automotive embedded systems. Moreover, an initial investigation
of verifying large Simulink models with the existing Simulink Design Verifier tool shows limitations in terms
of scalability and coverage of all types of requirements. The application of our approach to the BBW Simulink
model does not yet confirm the scalability of our approach, but it shows its feasibility. We show that we can
automatically generate a network of stochastic timed automata corresponding to the Simulink blocks from the
BBW model and their sorted order of execution, and analyze it via statistical model checking the complete
transformed model, against probabilistic functional and timing requirements, with high accuracy. Applying
exhaustive model checking on the 4-wheels architectural model of the BBW, integrated with formal semantics in
terms of timed automata generates a very large state-space, unless reduction techniques are applied [20, 21]. It is
then foreseeable that applying exact model checking on more complex industrial models would most likely run
into the state-space explosion problem. This motivates our choice of SMC as the analysis solution for Simulink
models, despite the fact that the method is not exact.
The remainder of the paper is organized as follows. In Section 2 we overview Simulink, and Uppaal SMC,

after which we present our Simulink to stochastic timed automata transformation approach in Section 3. The
architecture of the Simppaal tool is described in Section 4, and its validation by applying it on the BBW prototype
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is shown in Section 5. In Section 7 we compare to related work, before concluding the paper and outlining future
lines of research in Section 8.

2 PRELIMINARIES
In this section, we present an overview of Simulink, stochastic (priced) timed automata and Uppaal SMC.

2.1 Simulink
Simulink [8] is a graphical programming environment for model-based design, simulation, verification, and
code generation of multi-domain dynamic systems. The model-based design is achieved based on predefined
set of atomic blocks, including Sum, Product, Gain, Sine, Logical Operator, Relational Operator, etc., organized in
predefined libraries. Such blocks represent computational modules that produce an output based on a equation
or another modeling concept either continuously (i.e., continuous-time blocks) or at specific points in time (i.e.,
discrete-time blocks). Discrete-time blocks have a specific feature of delaying the first output. The duration of
the delay interval is called offset. Fig. 1 shows a visual representation of the continuous-time (red dashed line)
and discrete-time (blue continuous line) behaviors of the Sine wave Simulink block. Simulink also supports
the definition of custom blocks modeled as Stateflow diagrams and user-defined functions via the concepts of
s-function written in Matlab, C, C++, or Fortran, and Block Masks that have user-defined interface, encapsulated
logic, and hidden data from the user.
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Fig. 1. Example (Sine Wave Block): (a) Simulink Diagram and (b) Simulation Result

A hierarchical model is achieved through the implementation of a Subsystem, a block that encapsulates a set of
atomic blocks and possibly other subsystems. A subsystem can be either virtual, meaning that the encapsulated
blocks are evaluated according to the overall system model, or non-virtual, where the encapsulated blocks are
executed as a single unit that can be conditionally executed based on a predefined triggering, function call, or
enabling input. Other blocks also aid the creation of a hierarchical diagram, like Inport and Outport block from
the Ports and Subsystems library, and Goto and From block from the Signal Routing library.
For example, in Fig. 2 we show a small Simulink model, which is an excerpt from the BBW model. The first

block is a masked block called MaskedInput that produces the signal presented in Fig. 2a. The subsequent block
called Saturation limits the value of the signal to a maximum value of 100. In cases when the input signal is below
the maximum, the value remains unchanged. Finally, the signal is rounded to the closed integer by the Rounding
block and represents the output signal of the system witch is displayed by Fig. 2b. Between the Saturation and
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the Rounding block, there is the RateTransition block, which ensures the correct data transfer between the two
blocks. Scope blocks are used to visualize different signals.

(a) (b)

RateTransition

round

RoundingSaturationMaskedInput ScopeOut

ScopeIn

(c)

Fig. 2. Example (Simulink model): (a) Simulink input signal (Scope1), (b) Simulink output signal (Scope2), and (c) The Simulink
model.

Simulink models can be simulated and the results can be displayed as simulation runs. The order in which
the blocks are invoked during simulation is called sorted order (slist for short) and is computed by the model
compiler during runtime. The slist for a given Simulink model can be generated using the sldebug command
from the MATLAB console while MATLAB environment is in debug mode. The slist consists of tuples, where each
tuple corresponds to a Simulink block, be it composite or atomic, containing the following information: execution
order number, unique identifier and type. The slist contains information about the hierarchical structure of
the Simulink model for the non-virtual composite blocks. In the hierarchical structure, each of the non-virtual
composite blocks creates local context of execution, which we referrer to as nested level. This means that when
a non-virtual subsystem is to be executed during simulation, first all of the blocks inside the subsystem will
be executed before the execution of the subsequent blocks on the same level is started. As the Simulink model
supports modeling non-virtual subsystems inside non-virtual subsystems, theoretically it is possible to have
unlimited levels of nesting inside a given Simulink model. The virtual composite blocks as well as the blocks that
do not perform computation, such as: Mux, Demux, Goto, From, etc. are not part of the slist.
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2.2 Uppaal SMC
Uppaal SMC [9] is a statistical model checker for system models represented as networks of stochastic priced
timed automata. A stochastic priced timed automaton (SPTA) is defined as the following tuple:

SPTA = ⟨L, l0,X , Σ,E,R, I , µ,γ ⟩, (1)

where L is a finite set of locations, l0 ∈ L is the initial location,X is a finite set of continuous variables, Σ = Σi ⊎Σo
is a finite set of actions partitioned into inputs (Σi ) and outputs (Σ0), E is a finite set of edges of the form
(l ,д,a,φ, l ′), where l and l ′ are locations, д is a predicate on RX , action label a ∈ Σ, and φ is a binary relation on
RX , R : L→ NX that assigns a rate vector to each location, I assigns an invariant predicate I (l) to any location l ,
µ is the set of all density delay functions µs ∈ L × RX , which can be either uniform or exponential distribution,
and γ is the set of all output probability functions γs over the Σo output edges of the automaton.
The semantics of the probabilistic SPTA is defined over a timed transition system, whose states are pairs

s = (l ,v) ∈ L × RX , with v |= I (l), and transitions defined as: (i) delay transitions ((l ,v) d−→ (l ,v ′) with d ∈ R≥0
and v ′ = v + d), and (ii) discrete transitions ((l ,v) a−→ (l ′,v ′) if there is an edge (l ,д,a,Y , l ′) such that v |= д
and v ′ = v[Y ], where Y ⊆ X , and v[Y ] is the valuation assigning 0 when x ∈ Y and v(x) otherwise). We write
(l ,v) { (l ′,v ′), if there is a finite sequence of delay and discrete transitions from (l ,v) to (l ′,v ′). The delay
density function µs over delays in R≥0 for each state a is either uniform or exponential distribution depending on
the invariant of the location l . Let El denote the disjunction of guards such that (l ,д,o,−,−) ∈ E for some output
o. D(l ,v) = sup{d ∈ R≥0 : v +d |= I (l)} denotes the supremum delay, whereas d(l ,v) = inf{d ∈ R≥0 : v +d |= El }
denotes the infimum delay before enabling an output. If D(l ,v) < ∞ then the delay density function µs for a
given state s is a uniform distribution over the interval [d(l ,v),D(l ,v)], otherwise it is an exponential distribution
with a rate P(l). For every state s , the output probability function γs over Σo is a uniform distribution over the set
{o : (l ,д,o,−,−) ∈ E ∧v |= д} whenever the set is non empty.
Under the assumption of input-enabledness, disjointedness of clock sets and output actions, a collection of

composable SPTA can be defined as a network of SPTA (NSPTA) (A1 ∥ A2 ∥ ... ∥ An). The states of the NSPTA
are defined as a tuple s = ⟨s1, ..., sn⟩, where sj is a state of Aj of the form (l ,v), where l ∈ Lj and v ∈ RX

j , where
different automata synchronize based on standard broadcast channels. The probabilistic semantics is based on
the principle of independence between components. Each component decides on its own (based on a given delay
density function and the output probability function) how much to delay before producing an output.
For encoding the patterns presented in this paper, we use SPTA with real-valued clocks that evolve with

implicit rate 1. These automata are in fact timed automata with stochastic semantics, called stochastic timed
automata (STA). A network of STA (NSTA) is a parallel composition of STA, defined in a similar way like NSPTA.
The notion of SPTA is introduced due to the fact, that, for analysis we use monitor automata (composed in parallel
with the actual system model) that implement the stop-watch mechanism, which renders the model an NSPTA.

Uppaal SMC uses a probabilistic extension of WMTL [6] to provide:
• Hypothesis testing: check if the probability to reach a state ϕ within cost x ≤ C is greater or equal to a
certain threshold p (Pr (⋆x ≤Cϕ) ≥ p),
• Probability evaluation: calculate the probability Pr (⋆x ≤Cϕ) for some NSPTA,
• Probability comparison: is P(⋆x ≤Cϕ1) > P(⋆y≤Dϕ2)?

where ⋆ stands for either future (^) or globally (□) temporal operator.

3 SIMULINK TO UPPAAL SMC: APPROACH
In this section, we present our general approach for transforming Simulink models into NTSA. The transformation
handles a wide range of block types, including both atomic and composite blocks belonging to various categories
such as: non-virtual, continuous, discrete, s-functions, etc. A study on the types of blocks used in various industrial
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slist Simulink*
model

STA*
pa2erns

Model*Transformer

NSTA

Fig. 3. Overall Approach of the Simulink to UPPAAL SMC Transformation

Simulink models motivates this choice. Figure 3 illustrates the high level process of the transformation. The
approach relies on three artifacts: the Simulink model, the slist, and the set of STA Uppaal patterns, which are
parsed and transformed by the Model Transformer process in order to generate the NSTA model as a resulting
artifact. Our work consists of the following steps:

(i) We give a formal definition for the Simulink model and the atomic Simulink blocks (see Section 3.1);
(ii) We propose a flattening algorithm that transforms hierarchical Simulink models into flat models that do

not contain composite Simulink blocks (see Section 3.3);
(iii) We transform the continuous-time and discrete-time atomic blocks into their respective STA using the

Transformation Patterns (see Section 3.2);
(iv) We give a proof of transformation soundness for Simulink models consisting of discrete-time Simulink

blocks only (see Section 3.4).
The transformation of the user defined atomic blocks (e.g., S-function, Masked and Custom blocks) is highly

dependent on the documentation. Even though there is no limitation when it comes to identification and
transformation of the execution behavior of such blocks, the transformation of the blockRoutine depends on
the specification of the input-output function. This is due to the fact that the inner contents might be hidden
(Masked block) or implemented in various programming languages (S-function block) for which we do not
provide automatic translation into C function.

3.1 Formal definitions
Each Simulink block has an input-output function, input and output parameters, data types support and runtime
characteristics, e.g., sample time. The description of each Simulink block is accessible online [24]. In the following,
we introduce the formal syntax of a Simulink block and a Simulink model, respectively. These definitions are
used to reason about the soundness of our transformation, by establishing connections between formal syntactic
definitions and their corresponding semantics.

Definition 3.1 (Simulink block). An atomic Simulink block, denoted by B, is defined as the following tuple:

B = ⟨sn ,Vin ,Vout ,VD ,∆, Init ,blockRoutine⟩ (2)

where:
(i) sn ∈ Z - is the execution order number;
(ii) Vin - is a finite set of typed input real-valued variables;
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(iii) Vout - is a finite set of typed output real-valued variables;
(iv) VD - is a finite set of typed data (or state) real-valued variables;
(v) ∆ - represents the set of time points at which output is produced, ∆ = n ∗ ts + offset, where: ts , offset ∈ R≥0

are the sample time and the offset of the atomic Simulink block, respectively, and n ∈ N. For continuous
blocks ∆ is infinitely small and offset=0, meaning that the output is produced at infinitely small intervals;

(vi) Init() - is an initialization of the data variables;
(vii) blockRoutine() = Update();Output() - is the sequential composition of Output() andUpdate() functions.

It captures the functionality of a Simulink block, where: Output() : Vin ×VD 7→ Vout is the output function
andUpdate() : Vin ×VD 7→ VD is the update function.

Based on the definition of a Simulink block, we propose a formal definition of a Simulink model.

Definition 3.2 (Simulink model). A Simulink model is formally defined as a sequential composition of n Simulink
blocks, as follows:

S = B1 ⊗ B2 ⊗ B3 · · · ⊗ Bn (3)

where: ssn =
n⋃
i=1

sin is an ordered list of execution with ∀(i, j).i < j ⇒ si < sj , V S
in =

n⋃
i=1

V i
in is the set of input

variables,V S
out =

n⋃
i=1

V i
out is the set of output variables,V S

D =
n⋃
i=1

V i
D is the set of internal state variables, ∆S =

n⋃
i=1

∆i

is the set of time points at which the respective data and output variables are updated, and (Init ;blockRoutine)S ≜
(Init1;blockRoutine1)∥=∆1 ; (Init1;blockRoutine2)∥=∆2 ; . . . ; (Initn ;blockRoutinen)∥=∆n is an ordered list of pairs
of (Init, blockRoutine), which are executed atomically at given times ∆i .

Semantics of Simulink blocks. Let us rewrite ∆ = n ∗ ts + offset of Definition 3.1, as an integral multiple
of Simulink’s simulation step δ ∈ Q≥0, that is, ∆ = n ∗ (m ∗ δ ) + (r ∗ δ ), n,m, r ∈ N. Let us also assume that
x ∈ Vin , u ∈ VD , and y ∈ Vout are input, data, and output variables, respectively. Then, we define the semantics of
a Simulink block in terms of the following discrete-time transition system.

Definition 3.3 (Semantics of a Simulink block). Assume B is a Simulink block as given in Definition 3.1. The
semantics of B is a timed transition system, as follows:

TB = ⟨q0,Q,L,−→⟩, (4)
whereQ =Rn is the state space: a stateq = y |t = (y, t) is given by the values of all output variablesy at a given time
instance t ∈ R≥0, for given input at time t , that is, x |t , and data at time t , that is, u |t , q0 = y0 |t0 = (y0, t0) ∈ Q is the
initial state, t0 ∈ R≥0, L = La ∪Lt is the set of labels, with La the set of action labels: La = {Init ,blockRoutine},
Lt the set of time labels: Lt = {r ∗ δ ,m ∗ δ }, and −→ is the transition relation: −→⊆ Q × La × Lt ×Q with two
types of transitions:

q0
Init,r∗δ−−−−−−−→ q′ ⇐⇒ t ′ = t0 + r ∗ δ , and ∃y0 |t ′ such that y |t ′ = y0 |t ′

q
blockRoutine,m∗δ−−−−−−−−−−−−−−−→ q′ ⇐⇒ t ′ = t +m ∗ δ , and ∃u |t ,x |t ′ such that

u |t ′ = f (x |t ′,u |t ), and y |t ′ = f (x |t ′,u |t ′).
The first transition is the Init-type transition, fired at the beginning of the block’s execution, at t0, and the

second is the Operation-type corresponding to generating outputs for given inputs, at particular time points,
t ′ = t +m ∗ δ . Note that state q′ can be the same as q if the input does not change between two sample times. If
the Simulink block is continuous, thenm = 1, r = 1, meaning that transitions are fired “infinitely” often, that is,
every δ . Note that Definition 3.3 assumes an unknown but constant simulation step δ during the entire simulation
time, which is one of the possible cases in Simulink.
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By the above definition, a finite run ϱ of the Simulink block can be defined as the following sequence of
transitions:

q0
Init,r∗δ−−−−−−−→ q1

blockRoutine,m∗δ−−−−−−−−−−−−−−−→ . . . blockRoutine,m∗δ−−−−−−−−−−−−−−−→ qn

where qn is the last (final) state.
We denote by Runs(B,q0) the set of finite runs of B from q0. Assuming s1 < s2 < . . . < sn the execution order

numbers of the blocks in a Simulink model S described as in Definition 3.2, a run of S is defined as the sequence
of Init and Operation transitions of each block, at each step i ≤ n, in the corresponding order of execution.

3.2 STA Patterns
In order to facilitate the transformation of atomic Simulink blocks into their equivalent STA, we propose two
transformation patterns for the continuous-time and discrete-time blocks. The transformation patterns are
reusable and conform to the semantics of the tuple introduced in Equation 3. Figure 4 shows our transformation
patterns encoded in the input language of Uppaal SMC.

(a) (b)

Fig. 4. STA Transformation Patterns: (a) Continuous-time and (b) Discrete-time Blocks

Each pattern has its own execution mechanism. The execution of continuous-time patterns presented in
Figure 4a proceeds according to an exponential distribution for unbounded delays, whereas the execution of the
discrete-time pattern presented in Figure 4b proceeds according to the uniform distribution for time-bounded
delays modeled via the invariant. The elements of the STA patterns are as follows:

(i) Location Start - In the Start location the automaton waits for its release according to the order of
execution given in the slist and, for the discrete-time blocks, the offset parameter;

(ii) Location Operate - The Operate location models the operational mode of a Simulink block. For the
discrete-time pattern, this location is decorated with an invariant connected to the block’s period. For
the continuous-time pattern, the location is decorated with an exponential rate λ which determines the
probability of the automaton to remain in this location at each simulation step, according to an exponential
distribution;

(iii) Edge (Start, Operate) - The edge is enabled when the guard condition for releasing the block is satisfied.
The time for release for continuous blocks (Figure 4a) is given as gtime ≥ sn*IAT, where: gtime is the
the global clock, sn is the block’s execution number and and the IAT is the constant inter-arrival time
between two consecutive releases of automata. For the discrete blocks (Figure 4b) the release time depends
on the offset parameter which denotes the delay of the first execution of the block. When the edge is
traversed, two update actions (modeled as C functions) are executed: initialize(), which initializes the
data variables, and blockRoutine() which updates the output.
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(iv) The edge (Operate, Operate) - The edge is taken every time the automaton updates its output. As
explained above, the edge is traversed according to exponential distribution for continuous-time patterns
or at discrete time intervals for the discrete-time patterns.

To prove the correctness of the blockRoutine functions we use pre-/post-condition verification using the
Dafny [18] program verifier. A set of pre-conditions is used to describe the input, output and state variables prior
to the execution of the blockRoutine. Given that the pre-condition holds, after the execution of the blockRoutine,
the set of post-conditions has to be established. We consider the blockRoutine to be correct if the specified
set of postconditions is satisfied for all executions. For complex block routines that contain loops, we use loop
invariants and termination conditions. The detailed description of verification procedure for the blockRoutine
using Dafny has been omitted due to space limitation. For full details, we refer the reader to our technical report
[13].

3.3 Flattening Algorithm for Preserving the Block Execution Order
In this section, we describe the procedure used to assign unique execution order for each block inside a Simulink
model, called flattening procedure.

The flattening of a Simulink model is performed in two steps, as follows: (i) removing the non-virtual composite
Simulink blocks from the model and replacing them with a set of atomic Simulink blocks, and (ii) assigning
correct execution order number for the atomic blocks such that the original behavior of the model is preserved.
The proposed flattening procedure is recursive which makes it suitable for flattening Simulink models with
arbitrary many nested levels.
An intuitive, yet naive approach for flattening a Simulink model would be to apply the flattening procedure

on the model itself, which includes traversing the complete model. Even though such approach is feasible with
respect to step (i), it cannot satisfy step (ii), as the Simulink model itself does not contain information about the
execution order of the contained blocks, since the execution order number of each Simulink block is determined
at the beginning of the simulation.

Algorithm 1 Flattening algorithm for sorted order list.
1: function flatten(String currentBlockId, String currentBlockOrderNo, String parentBlockOrderNo)
2: orderedList ← emptyList ▷ Ordered list containing blocks IDs.
3: if isAtomicBlock(currentBlockId) then ▷ The current block is atomic.
4: orderedList .append(parentBlockOrderNo.concat(currentBlockOrderNo))
5: else ▷ The current block is a subsystem.
6: currentChildren ← дetChildren(currentBlockId)
7: concatenatedParentId ← parentBlockOrderNo.concat(currentBlockOrderNo)
8: for all child in currentChildren do
9: orderedList .append(f latten(child .id, child .orderNo, concatenatedParentId))
10: return orderedList

As explained in Section 2.1, the slist represents the hierarchical structure of the Simulink model as a collection
of contexts. We refer to the Simulink model itself as the root context, while each of the non-virtual subsystem
blocks inside the model are refereed to as local contexts. For the virtual and atomic subsystem blocks, no contexts
are created, as such blocks are flattened by Simulink automatically. Each context creates a nested level. The blocks
residing directly on the root level have a global execution number. Blocks residing inside a local context have
a local execution number, which is assigned relative to the local context. Given such structure, the procedure
for flattening a Simulink model is reduced to a procedure of assigning global execution numbers to all atomic
Simulink blocks contained inside all the local contexts inside the model. By doing that, we perform an implicit
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flattening of the Simulink model, as the correct order of execution of the atomic Simulink blocks from the
model relative to the root context is determined. The pseudo code of the algorithm which is used for assigning
global execution order number of the atomic Simulink blocks nested arbitrary deep inside a given Simulink
model is given in Algorithm 1. The algorithm produces new slist, which contains a subset of the original tuples
corresponding to the atomic blocks only, sorted according to their global execution number from first to last,
which when executed as such give the overall behavior of the original Simulink model. In the newly generated
slist all the non-virtual subsystems (local contexts) are replaced with the respective set of atomic blocks.

The flattening of a Simulink model is fully automated, meaning no user interaction is required. The procedure
takes as an input the original slist generated in the MATLAB console saved as text file.

3.4 Proof of Transformation Soundness
Assume a Simulink model, as described by Definition 3.2, consisting of discrete-time blocks only, which has to
be analyzed against properties in the category “for all paths” (e.g., invariance/safety, inevitability etc.). In order
to show the soundness of our approach, we can show that the set of runs of the resulting NSTA, obtained by
using the semantic pattern given in Figure 4b, is refined by the set of runs of the Simulink model, under the
discrete-time blocks only assumption. We have that a Simulink model A′ is a refinement of the NSTA model A
if and only if Runs ′A ⊆ RunsA, meaning that if the model A satisfies a safety or inevitability property p, and A′
refines A, it then follows that A′ also satisfies p.
We show the refinement at the discrete-time block level first and then we explain how the result extends to

Simulink models with discrete-time blocks. For this, we use the results on decision problems for timed automata,
overviewed by Alur and Madhusudan [3]. The authors show that reachability is decidable for the discrete-time or
sampled semantics of timed automata, assuming an unknown non-negative rational sample time. If we consider
the STA pattern of Figure 4b, we notice that the output probabilities over edges outgoing from locations Start
and Offset, according to the uniform distribution γ , are 1, since there is only one outgoing edge from each
location, respectively. Similarly, the delay density function µ gives probability 1 of delaying in location Operate
for ts time units, due to the disjointness of the invariant t ≤ ts and the guard t ≥ ts . Basically, the automaton
of Figure 4b is a deterministic closed timed automaton (since clock constraints are of the form x ▷◁ c , with
▷◁∈ {≤, ≥}).

Refinement also equates to the problem of language inclusion between timed automata, which is an undecidable
problem in general. An important class of timed automata for which the inclusion problem is decidable involves
the notion of digitization [3]. A timed language L is said to be closed under digitization if discretizing a timed word
(a string of symbols tagged with occurrence times) in the language, by approximating the events of the timed
word to the closest tick of a discrete clock results in a word that is also in L. It is a proven fact that closed timed
automata are closed under digitization. This means that constructing a sampled version of the STA automaton
of Figure 4b yields an automaton that is a refinement of the original pattern, since LAd ⊆ LA, where A is an
automaton conforming to our STA pattern, and Ad is its discretized version.

Let us consider a digitization of the transformation pattern automaton of Figure 4b, as follows:

Definition 3.4 (Sampled semantics of STA of Figure 4b). Given a timed automaton A as in Figure 4b, and the
sampling rate δ ∈ Q (equal to the simulation step of the Simulink block), we define an automaton Aδ with the
states, initial states and final states the same as the states, initial states, and final states of A, and the transitions
of Aδ labeled with either action a ∈ Σ ∪ {ϵ}, where ϵ is not in Σ, withm ∗ δ ,m ∈ N, or with r ∗ δ , r ∈ N. We call
Aδ a sampled (digitized) timed automaton.
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Note that in any reachable state of Aδ , the values of clocks are integral multiple of δ . A run of Aδ with initial
state s0, over a finite timed trace ζ = (t0,a0)(t1,a1)(t2,a2) . . . (tn ,an) is a sequence of transitions:

s0
0, Init ialize−−−−−−−−−→ s1

r∗δ,blockRoutine−−−−−−−−−−−−−−→ s2
m∗δ,blockRoutine−−−−−−−−−−−−−−−→ . . . m∗δ,blockRoutine−−−−−−−−−−−−−−−→ sn .

Theorem 1. Let us assume a discrete-time Simulink block B defined by Definition 3.1, and a discrete transformation

pattern described by a timed automaton with sampled semanticsAδ , as in Definition 3.4. Then, we have that B refines

Aδ .

Proof: There is a direct mapping between a location l of Aδ and the value of the output variable y of B,
meaning that in locations Offset and Operate the variable y is observable (is assigned over the corresponding
discrete transitions, respectively). By Definition 3.1 and Definition 3.4, all transition sequences possible in B
are also possible in Aδ . Therefore, given q0 the initial state of B and s0 the initial state of Aδ , it follows that
Runs(B,q0) ⊆ Runs(Aδ , s0), which equates to the fact that B is a refinement of Aδ . Q.E.D.

Given the fact that Aδ refines A, the STA pattern automaton of Figure 4b, it follows by transitivity of the
refinement relation that the Simulink block B refines the STA pattern automaton A, assuming the discrete-time
behavior.
This result extends to a Simulink model defined by Definition 3.2, if the former contains only discrete-time

blocks. Given the execution order of each block, only one block at a time can be enabled and executed in the
Simulink model, therefore the probability distributions of the network of STA that represents the Simulink model’s
transformation render transitions with probability one, so the parallel composition of STA is in fact a parallel
composition of deterministic timed automata, which due to the enforced execution order is in fact a sequential
composition of deterministic timed automata that can be further sampled. Given the result of Theorem 1, it
follows that a discrete-time Simulink model described as in Definition 3.2 refines the network of STA in which it
is transformed.

In case the Simulink model contains one or more continuous-time blocks that are being transformed by instan-
tiating the transformation pattern of Figure 4a, the resulting network of STA uses the exponential distribution to
compute the delay of each continuous-time STA, and the uniform distribution to chose the STA that is going to
broadcast its output within the network. Therefore, in such cases, to have an indication on the correctness of
transformation, we compare the simulations of the Simulink model, generated by Simulink, with the simulations
of its STA counterpart generated by Uppaal SMC. If they are identical, we can conclude that the behaviors of the
Simulink model and its translation are similar, to the extent provided by simulation.

4 SIMPPAAL TOOL
In this section, we present our tool called Simppaal (SIMulink to uPPAAL), which automates the process of
transforming Simulink models into NSTA suitable for analysis using the Uppaal SMC tool, as described in Section
3. In the following subsections, we describe the architecture and the functionality of the Simppaal tool.

4.1 Simppaal Architecture
The architecture of the Simppaal tool is based on a modular design, where the overall functionality is achieved
through a set of communicating (software) modules, via well-defined Application Programming Interfaces (APIs).
The architectural design is given in Figure 5, and is based on the following concepts: artifacts, which can be input
or output represented as circles, and themodules represented as squares. In the following, we use the term module
and software engine interchangeably. The tool is implemented in the JAVA programming language, with limited
usage of third party libraries. The core module of the tool is the Simulink Transformation Engine (STE), whereas
the other two modules UPPAAL File Parser Engine (UPE) and the SList Parser Engine (SPE) have supportive roles,
which include serialization and de-serialization of the specific artifacts.
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Fig. 5. Simppaal tool architecture.

As shown in Figure 5, the transformation process is based on three different input artifacts: the Simulink model
file, the slist given as a textual file, and an Uppaal .xml file that contains the templates for the continuous- and
discrete-time blocks. Each module that is handling a given artifact is responsible for: i) reading and parsing that
input in a format such that it can be consumed by other modules, and ii) writing back to that file if required.
Given that, the STE module is responsible for parsing the Simulink files, the Uppaal Parser Engine (UPE) handles
the reading from and writing to Uppaal specific .xml files, while the sorted order list is handled by the SList
Parser Engine (SPE).

The STE module. This is the core module of Simppaal. Its main responsibility is to transform a Simulink model
file into a NSTA suitable for analysis using Uppaal SMC. This is by no means a trivial procedure, and for that
purpose, the module itself is further decomposed into submodules as follows: a submodule for reading and
manipulating Simulink models, and another one for transforming Simulink blocks into STA. The role of the first
submodule is to read a model file from the disk and store it as a memory object. It delivers functionalities such as:
retrieving a Simulink block by its unique identification, navigating through the structure of the model, identifying
the predecessors and successors of a given Simulink block, etc. The implementation of this submodule is based
on the ConQAT library1, which provides an API that eases the model’s traversal and block manipulation. The
library, however, exhibits limitations when it comes to traversing referenced subsystem blocks, as the contents of
the referenced subsystem resides in a different context saved in a separate file. To mitigate this problem, we have
developed a “context-switching" procedure that enables the tool to switch contexts, that is, go from one file and
back, without information loss.

The second STE submodule is responsible for transforming an atomic Simulink block into a corresponding STA,
by mapping Simulink parameters into STA specific constructs, such as: sample time, execution order number
and the block routine. The submodule also generates Dafny verification expressions for each instance of block
routine.

The UPE module. This module is used for reading the Uppaal file that contains the patterns for the continuous-
and discrete-time blocks, as well as for writing the result Uppaal model into a new file. The module provides an
API that allows manipulation of Uppaal files, including operations such as: deserializing a Uppaal file into a
Uppaalmodel, adding and retrieving elements from the Uppaalmodel (automaton, location, edge) and serializing
1https://www.cqse.eu/en/products/simulink-library-for-java/overview/
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the Uppaal memory model back into a file that is used as an input to the Uppaal tool. The UPE can be used as a
stand-alone library or as part of any other tool for manipulating Uppaal models.

The SPE module. A module that implements the flattening algorithm discussed in Section 3.3. It reads the slist
provided as a textual file and applies the flattening algorithm. The result is a new slist of atomic Simulink blocks
according to the execution order number that is then passed on to the STE. Unlike the UPE, the SPE module is
bound to a specific purpose and cannot be reused outside the initially-intended context.

4.2 Simppaal work flow
The transformation of Simulink models into networks of STA, as implemented in Simppaal, is performed in the
following steps:
(1) Flattening of the sorted order list
(2) Collecting information about the atomic Simulink blocks
(a) Finding a block in the model and retrieving block parameters
(b) Populating the lists of predecessors and successors

(3) Transforming atomic Simulink blocks into STA
(a) Mapping Simulink block information into STA constructs
(b) Determining the output signal type
(c) Instantiation of the STA inside the Uppaal model

(4) Saving the generated Uppaal model in a new file
The transformation process of a Simulink model into a NSTA starts by loading and flattening the slist such

that the global execution number to each atomic block in the model is assigned (Step 1).
The flattened slist is then used as a primary input of STE, for transforming the Simulink model into a NSTA.

Basically, the transformation of the Simulink model is a process of iterating through the list, collecting information
about each block (Step 2), and mapping that information onto an adequate STA pattern (Step 3). The process of
collecting information about each block is performed as a set of simpler actions that include Step 2.a: getting
an entry from the list and locating the Simulink block inside the model by its unique identifier. The procedure
locates the given block no matter how deeply it is nested inside the model, even if it resides in another file. This is
enabled by our context-switching technique. Once the block has been identified, the STE tries to identify all of its
predecessors, which is a list of non-virtual atomic Simulink blocks, performed in Step 2.b. In our implementation,
the following blocks are considered as virtual: Mux, Demux, Inport, Goto, From and Outport. Additionally, some
non-virtual blocks that do not perform computational routines, such as Scope and RateTransition are added to
the list of virtual blocks. In other words, a predecessor is an atomic block whose output is consumed by the block
that is currently being transformed. In a similar way, the STE identifies the list of successors, which is a list of
non-virtual atomic Simulink blocks, which uses the output of the given Simulink block as an input for producing
an output.
Once all the transformation-relevant information for the block is gathered, the STE transforms the Simulink

block into an STA in Step 3. The transformation is done in several steps: first, in Step 3.a, the STE calls UPE to
provide the list of patterns. Once the patterns are loaded, the STE determines the execution type of the block
(continuous-time or discrete-time) based on the existence of sample time, and assigns the appropriate pattern from
the list. Then, the block details, such as execution order number, sample time (if discrete) and the inter-arrival
time are mapped onto the pattern. Next, based on the block type, the STE tries to load the plug-in that generates
the block routine as a C-function and a Dafny verification objective. If there exists no plug-in for the given block
type, an empty block routine is generated. With the generation of the block routine, all the template constructs
have been instantiated with block-specific ones. With this, the block transformation is complete and the pattern
becomes an instantiation of an STA.
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Fig. 6. Simppaal GUI.

Once the automaton is obtained, in Step 3.b, the STE determines the type of the output produced by the block,
which can be either scalar or vector of type Boolean or Double. Even though the type of the output in general is
defined for each block type, sometimes it can be determined by other factors, such as: the type and format of the
input (ex: a Gain block that has input scalar can produce either scalar, vector or matrix, but if the input is vector
it cannot produce scalar).
The transformation is completed in Step 3.c, and the STA that corresponds to the given block is added to the

Uppaal model. The operation includes adding the automaton into the list of automata, and instantiating a global
shared variable with a type and name determined in Step 3.b, which represents the output channel. Finally, in
Step 4, the generated Uppaal model is saved into the file system, in XML format, which can then be used as an
input to the Uppaal SMC tool.

In the current version, Simppaal is a standalone tool that can be used via the simple interface, as presented in
Figure 6. To create a Uppaal model file, the user has to select the root Simulink model, slist, and the destination
file where the result Uppaal model is saved. Once all parameters have been selected, the transformation can be
started by pressing the Start button. During the transformation, the Simppaal tool logs important messages in
the console part. After the transformation is complete, the user can save the console as a log file for analyzing
the output, or for debugging purposes.

4.3 Scope of Application
The current version of the tool has a limited scope and can be used for a certain subset of Simulink models only.
This is mostly due to the fact that currently, we have implemented a set of plug-ins for the automatic generation
of Simulink blocks that are present in the BBW model.

The Simppaal tool cannot properly handle model referencing in cases when a parent model references directly
a model instead of a library. This is due to the fact that the structures of the referenced models and the referenced
libraries are different. The referenced libraries always start with a subsystem block that has the same ‘in’ and
‘out’ ports as the subsystem that is referencing the library in the parent model. In contrast, the referenced models
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are loaded as such, meaning that the contents are not necessarily wrapped inside a subsystem block. We are
already working on addressing this technical limitation, which is expected to be fixed in the next release of the
Simppaal tool.

5 APPLICATION ON AN INDUSTRIAL USE CASE: THE BRAKE-BY-WIRE SYSTEM
In this section, we introduce the BBW use case, which we transform into a NSTA with the Simppaal tool and the
verified with Uppaal.

(a)

(b)

Fig. 7. The ABS function: (a) The ABS subsystem (b) The "If v>=10km/h" subsystem

System description. BBW is a prototype implementation of a braking system equipped with an anti-lock braking
(ABS) function, and without any mechanical connection between the brake pedal and the four brake actuators.
The dedicated pedal sensor reads its current position, which is used to compute the desired brake torque that is
distributed to each wheel. The four wheel sensors measure the rotational speeds, which are used to compute
the velocity of the car. If the velocity exceeds 10km/h, the ABS function is enabled to avoid the wheels locking
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or skidding. The friction coefficient has a nonlinear relationship with the slip rate. When the slip rate starts
increasing, the friction coefficient also increases. After a certain threshold, an increase in the slip rate reduces the
friction coefficient of the wheel. For this reason, the ABS decides if the requested brake torque should be applied
or if the brake actuator is released based on the value of the slip rate.

Despite being a system prototype, the BBW Simulink model is a faithful representation of a realistic industrial
system. It contains 320 blocks connected in a hierarchical model with four levels of nesting. For exemplification
purposes, we present the ABS function in Figure 7.

At system level, the BBW system has a set of 13 functional and 4 timing requirements that need to be verified.
In this parer, we present six of them, as follows:
R1BBW The time needed for a brake request to be computed shell not exceed 10 ms.
R2BBW The time needed for a brake request to propagate from the pedal sensor to the wheel actuator shell not

exceed 50 ms.
R3BBW The difference between the time needed for a brake request to propagate to two different wheel actuators

shell not exceed 4 ms.
R4BBW If the brake request is 0, then the ABS sell set the torque to 0.
R5BBW If the vehicle speed > 10 km/h and the slip rate > threshold, then the ABS shall set the torque to 0.
R6BBW If the vehicle speed ≤ 10 km/h or the slip rate ≤ threshold, then the ABS shall apply the requested torque.

Transformation. The Simppaal tool produces a network of 145 automata corresponding to the computational
blocks in the Simulink model (e.g., gain, sum, rounding), while the 175 non-computational blocks have been
removed during the flattening and transformation phases. In this network, 129 STA are created using the discrete-
time pattern and 16 STA are created using the continuous-time pattern. Simppaal also generates 129 block
routines automatically, while 16 blocks routines are left to be implemented manually (e.g., S-functions, Sateflow
blocks, masked blocks). The BBWmodel contains four identical simple flow charts represented as Sateflow blocks,
which are modeled manually based on a 1-to-1 mapping (i.e., flow chart conditions are mapped to guards, and
flow chart actions are mapped to updates). Due to the fore-mentioned missing block routines, the automatically
generated model cannot be used as such for analysis. However, these shortcomings can be fixed with minimal
effort, which makes the model suitable for analysis using the Uppaal SMC tool. A short tutorial on how to run
Simppaal tool on the BBW example can be accessed on the following link2.

Fig. 8. The Monitor automaton for requirement R5BBW .

Analysis and results. Once the complete model is created, one can validate the correctness of each of the STA
by comparing its simulation trace in Uppaal SMC with the simulation trace of the corresponding Simulink block.
Additionally, we can verify an extensive set of functional and timing requirements. In Table 1, we provide concrete
verification results for the six requirements introduce above. For this, we need to implement an additional STA
2http://www.idt.mdh.se/ predragf/SIMPPAAL/
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Table 1. Overall Results of Statistical Model Checking.

Req. Query Result Runs Time
R1BBW Pr [<= 35](<> Monitor .End and Pr ∈ [0.975066, 1] with 201 4926.6 s

Monitor .x <= 10) confidence 0.9875
R2BBW Pr [<= 75](<> Monitor .End and Pr ∈ [0.990014, 1] with 597 13872.1 s

and Monitor .x <= 50) confidence 0.995
R3BBW Pr [<= 75](<> Monitor .End and Pr ∈ [0.980056, 1] with 263 6097.2 s

Monitor .y <= 4) confidence 0.99
R4BBW Pr [<= 75](<> Monitor .End and Pr ∈ [0.998, 1] with 3797 290362.8 s

(RequestedTorque == 0 imply confidence 0.999
ABSBrakeTorque == 0))
Pr [<= 75](<> Monitor .End and Pr ∈ [0.851567, 0.951396] 145 13224 s
RequestedTorque == 0) with confidence 0.95

R5BBW Pr [<= 75](<> Monitor .End and Pr ∈ [0.995005, 1] with 1058 23892.4 s
((VehicleSpeed > 10 and SlipRate > 0) confidence 0.99
imply ABSBrakeTorque == 0))
Pr [<= 75](<> Monitor .End and Pr ∈ [0.893009, 0.992099] 79 2588s
VehicleSpeed > 10 and SlipRate > 0) with confidence 0.95

R6BBW Pr [<= 75](<> Monitor .End and Pr ∈ [0.902602, 1] with 36 656.8 s
((VehicleSpeed <= 10 or SlipRate <= 0) confidence 0.95
imply ABSBrakeTorque == RequestedTorque))
Pr [<= 75](<> Monitor .End and Pr ∈ [0.00790082, 0.106991] 79 18894.6 s
(VehicleSpeed <= 10 or SlipRate <= 0)) with confidence 0.95

that monitors the execution of the system for a particular requirement. For instance, for requirement R5BBW
we have implemented the monitor presented in Fig. 8 that follows the execution of each component in the ABS
subsystem according to the execution order. For each simulation to start at an arbitrary moment in time, we
introduce a clock t that allows for a delay between 0 and 25 time units. Similar monitors have been implemented
for the other five requirements. In Fig. 8, we have added an additional clock x , that monitors the time needed for
the ABS to execute. This mechanism is employed to analyze the three timing requirements.

The Uppaal SMC can achieve analysis results with different probability interval spans and different confidence
levels, depending on the values of the statistical parameters. During the analysis, we have opted for different
values of α , the probability of false negatives, and ϵ , the probability uncertainty, which influence the number of
runs generated by the model checker. To run the verification, we have used a HP Z620 Workstation with Intel
Xeon Processor 3.0 Ghz, 8 cores, and 64 GB DDR3.

Uppaal SMC can also display additional verification results, such as probability density distribution. In Fig. 9,
we show the distribution of the end-to-end timing results of requirement R2BBW ).

6 DISCUSSION ON THE APPROACH
In this section we discuss the characteristics of the proposed approach for the transformation of Simulink models
into NSTA and their analysis using Uppaal SMC.
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Fig. 9. Probability Density Distribution for requirement R1BBW

Reusability and Automation. The core of the Simulink to NSTA transformation is the transformation patterns.
Such approach provides a straightforward and highly automated transformation procedure, with the transfor-
mation result being faithful to the original model. This is achieved by instantiating patterns for both discrete-
and continuous-time blocks whose functional behavior is encoded as C functions, implemented in our Simppaal
tool. The usage of the C routines enables us to extend the application of the patterns and faithfully represent the
functional behavior of each block. This means that no matter how complex the computational routine of the
given block is, it can be transformed via the given patterns. Our approach supports the transformation of the
current blocks in the Simulink library, but also of custom atomic blocks built using the concepts of S-function
and Mask. We verify the functional correctness of each block (its block routine) by using the Dafny program
verifier. To be able to automatically transform all blocks of a given model, an adequate set of plug-ins has to
be developed. This is by no means a limitation of the tool, but it is due to lack of time and resources needed to
develop the extensive set of plug-ins. The proposed flattening procedure based on a recursive algorithm can,
in principle, can be applied to flatten any model with arbitrary nested composite blocks. The limitation of the
current implementation of the Simppaal tool with respect to transforming Simulink models composed of several
Simulink files has been solved, and the implementation will be provided in the next release of the tool. Based
on our current experience, the current version of the Simppaal tool, as presented in this paper, can be used to
generate an NSTA model of the Brake-by-Wire industrial prototype model, which is suitable for analysis using
Uppaal SMC, after minor changes.
Despite the mentioned limitations, our approach and the Simppaal tool has been successfully applied on

the Simulink model of the Brake-by-Wire industrial prototype. The transformation results from the case study
show that Simppaal is fast and efficient in transforming Simulink models into NSTA. The positive experience
of the application described in this paper, combined with the solid code base and the modular tool architecture
form a solid basis towards extending it to a more complete platform, which can be further extended with new
features, including the formal specification of properties to be verified, and ultimately completely automated to a
“push-button" formal analysis of Simulink models via SMC.

Verification Lessons. The state space explosion is a real problem when attempting to exhaustively verify
complex automotive systems. We overcome this by employing statistical model-checking techniques that generate
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stochastic simulations and employ statistical methods to estimate probabilities and probability distributions over
time with given confidence levels. However, to achieve a high confidence level, Uppaal SMC might need to
generate a large number of simulation, which is time consuming process. For example, to verify R5BBW (see Table
1), Uppaal SMC needs around 80 hours to generate 3797 runs. The work proposed in this paper shows promising
results and enables verification of functional and timing requirements of automotive embedded systems modeled
in Simulink, but further improvements might be required to ensure the efficiency and scalability required for
industrial adoption.

7 RELATED WORK
Verification of control algorithms implemented in Simulink has been formulated as a hybrid-automata reachability
problem, like in CheckMate [7], where Simulinkmodels are transformed into polyhedral-invariant hybrid automata
(PIHA). This method is limited to a restricted class of models, as reachability is known to be undecidable for hybrid
automata, in the general case, and it does not scale well to the complexity of real industrial cases, containing large
numbers of very diverse modules: continuous, discrete, StateFlow, etc. Verification of more complex Simulink
models has been addressed following three strategies:

(a) Generation and abstraction of simulation traces. The simulation capabilities of Simulink are used for generat-
ing and collecting simulation traces that are later transformed, by abstraction, into a state machine representing
the system’s behavior, which can be model checked without difficulty [5]. PlasmaLab follows this approach,
relying on SMC for model checking [17]. This strategy is limited by the feasibility to generate an exhaustive
simulation of the system and raises concerns about completeness. Moreover, it is not adequate for analyzing
extra-functional properties, at least not without further changes on the initial model. On the positive side, the
approach is generic, applicable to any kind of Simulink diagram, and does not require adding more computation
if new blocks are considered.
(b) Abstraction of blocks into contracts/theories and formal analysis. First, the system designer “lifts” the

specification of each block using some logics. Second, the whole specification is composed and fed into an
analysis engine. Ferrante et al. [12] use contract-based theory in order to lift the block specification, and rely
on a combination of SAT solvers and the NuSMV model checker for analysis. Hocking et al. [15] use the PVS
specification language for writing the specification, and rely on the PVS theorem prover for analysis. A limitation
of this strategy is that both steps still require much user interaction, so it is error-prone and requires certain
understanding of the formal analysis engines, which is not common among embedded systems engineers.

(c) Model to model transformation followed by model checking. This strategy tries to minimize user intervention. It
applies some kind of automated model-to-model (M2M) transformation from Simulink into an automata language
that can be verified with model checking. This strategy has received much attention in the literature. The approach
proposed by Barnat et al. [4] focuses on transforming the Simulink models into the language of an LTL explicit
model checker called DiViNE. The authors show how this can be integrated with the Honeywell formal verification
environment. They only provide support to discrete blocks, yet they show it suitable for the aeronautics industry.
Similarly, the approach by Meenakshi et al. [22] proposes a transformation of discrete blocks into NuSMV. In
contrast, Agrawal et al. [2] propose a transformation approach of Simulink models into networks of automata,
without providing concrete means for formal verification. The work by Miller [23] proposes a translation from
Simulink to Lustre, and enables formal verification with a constellation of model checkers and provers. The
transformation of StateFlow design elements has been addressed in research endeavors by Manamcheri [19] and
Jiang et al. [16], in which the authors propose transformation frameworks from StateFlow/Simulink into timed
and hybrid automata, respectively, without considering other types of Simulink blocks.

In general, the solutions available for automated M2M transformation of Simulink (i) are quite restrictive with
respect to the number of supported block types (only discrete blocks or only StateFlow diagrams), and (ii) have
been applied only to academic or middle-size Simulink models, such as the engine control system appearing in
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the Simulink distribution, thus raising concerns about scalability. The only exception is Zuliani et al. [25], which
uses Bayesian statistical model checking for analyzing the specification and can scale better to larger-size models.
Despite that, the approach has been applied to a medium-size Simulink model only, and it seems to have practical
limitations such as not accepting multi-file Simulink models.

Simppaal follows the third strategy, but it goes beyond the current state of the art, by reducing the modeling
effort (M2M transformation is based on templates and fully automated), and by supporting a larger number of
Simulink blocks (some of them is still under development). To our best knowledge, it is also the only approach
that formally verifies the encodings of the Simulink blocks functionalities, by using Dafny.

8 CONCLUSIONS AND FUTURE WORK
In this paper, we have extended and improved our already existing pattern-based approach for transforming
Simulink models into NSTA semantics [14]. For that purpose, we have proposed the following extensions: i) a
formal definition of Simulink blocks, to facilitate the soundness proof between the formalized Simulink model
and the SPTA, ii) a definition of a Simulink model as a serial composition of interconnected Simulink blocks, iii) a
soundness proof for the mapping of the formalized Simulink blocks into the respective STA, for discrete-time
models, and iv) a tool, called Simppaal, which embodies our approach and is intended for automating the complete
process of transforming Simulink models into NSTA.
The main purpose of the tool is to enable formal analysis of large Simulink industrial models, and keep the

formal modeling effort to a minimum, by adding automation to the transformation. A secondary goal is to make
the approach applicable for practitioners, who are not expert in formal methods. Both the scalability and the
suitability for engineers of out tool Simppaal await validation.

The approach described in this paper is suitable for transforming Simulink models that contain both continuous-
time and discrete-time blocks, which has been identified as a major limitation of the existing academic approaches.
Another strong point of our approach is the fact that it can be applied on both Simulink-provided and user-defined
blocks. Additionally, the Simppaal tool provides a high degree of automation, thus minimizing the interaction
with the user during the formal model generation phase. This is achieved through the complete automation of
the M2M transformation from Simulink to NSTA. This feature of the approach makes it a promising candidate
for adoption in industrial settings, where analysis and verification approaches are evaluated and approved based
on how fast, accurate and user-demanding they are. Another benefit of the proposed approach is the fact that
all the functional behavior of the model is verified. For that purpose, we use Dafny, a program and language
verifier by which we prove the correctness of each computational routine that encodes the functional behavior of
a Simulink block. Similar to the generation of the formal model, the generation of the Dafny verification routines
is in principle completely automated and handled by the Simppaal tool, thus almost no additional modeling effort
is required from the user.
The ability of the tool to automatically generate the NSTA model of any type of industrial system modeled

in Simulink depends on the coverage of the Simulink block types by the plug-in library. The current version of
the Simppaal plug-in library consists of ten plug-ins that are enough to cover most of the block types found in
the Brake-by-Wire model. In order for the tool to be applicable on a large and diverse set of industrial Simulink
models, the plug-in library has to be extended accordingly.
Our future work can proceed in several directions. First, we aim at improving the efficiency and scalability

of our approach, by proposing a new transformation procedure for the triggered subsystem blocks. Second, we
intend to implement the missing features of the Simppaal tool, such that it can be applied on larger industrial
systems. By doing that, we seek for more industrial penetration. This is tightly connected with the next direction
of our work, which includes more extensive validation of the approach. The goal is to consider at least two
examples of industrial Simulink models of operational systems, and i) test the scalability of the Simppaal tool
to generate formal models of such Simulink models, and ii) perform statistical model checking of the obtained
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models using Uppaal SMC. Finally, we plan to explore the possibilities of generating formal models required
by other verification tools, such as for instance the STORM probabilistic model checker [11], in an attempt to
enhance the class of systems that can be tackled.
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