

Project Summary

Acceptanstest av säkerhetskritisk

plattformsprogramvara

2 AcSäPt – Acceptanstest av säkerhetskritisk plattformsprogramvara

The Project

In this report we summarise the results of the FFI-project AcSäPt

(Acceptanstest av säkerhetskritisk plattformsprogramvara). The overall

objective of the AcSäPt project has been to develop and define an

acceptance test method that can show adherence to the ISO 26262:2011

standard for safety related software.

Our solution is based on creating configurable formal models of all relevant

AUTOSAR BSW (basic software) components. These models can be used for

finding out which requirements from the software specification are safety-

critical for a specific use-case. They can also be used for generating test

cases for black-box testing of a BSW module from a supplier; the

implementation can be tested until we achieve 100% coverage of the

safety related features and scenarios.

The remainder of this report describes both the problem and our solution

in more detail.

The project started in 2012 and has run for two years with five partners: SP,

Quviq, Volvo Cars, Mentor Graphics, and Mecel.

.

Model-based testing

3 AcSäPt – Acceptanstest av säkerhetskritisk plattformsprogramvara

The Problem

The AcSäPt project addresses the following questions:

 How can a vehicle OEM, such as Volvo Cars, ensure that the
AUTOSAR platform software (BSW) of each ECU in a car is
functionally safe?

 Can the OEM specify acceptance criteria for safety-critical BSW?

 What are the methodological implications?

 How to handle variant and version problems?

According to the functional safety standard for road vehicles, ISO26262, it

is important to identify which parts of the electrical/electronic (E/E)

systems are safety related, and which safety requirements will be put on

them. All safety requirements are derived from hazard analyses, which are

performed for the different functionalities that the E/E systems provide. In

our project we investigated such safety requirements that are allocated to

the AUTOSAR platform software. We addressed the challenge on how to

claim that a particular implementation meets these safety requirements.

We identified five problems that make it hard in general to give arguments

and evidence why a certain piece of BSW fulfils all safety requirements in a

given context.

1. There is a functional gap between application and platform, and
thus a gap between the implications of functional safety. Although
it is clear how to break down the safety requirements of a
particular functionality to functional subsystems and -
components, it is unclear how the safety requirements relate
between application and platform components. This relation may
be highly implicit. To find arguments and evidence of fulfilling the
safety requirements put on BSW, we need to explicitly identify
what they are.

4 AcSäPt – Acceptanstest av säkerhetskritisk plattformsprogramvara

2. In the lingo of ISO26262 the BSW is almost always a Safety-
Element-out-of-Context. This means that the BSW is developed
before knowing all the functions that are going to use it. As a
consequence we will not have explicit Technical Safety Concepts
(TSC, terminology of ISO26262) of all the applicable items ready
when the BSW development will start. This contrasts the life cycle
model of ISO26262, which demands all safety requirements to be
identified at the beginning of the development process.

3. Even if we make all safety requirements explicit, it is still hard to
come up with a safety argumentation that is valid for higher
automotive safety integrity levels (ASIL) based only on product
evidence. This is an important point when we want to specify
acceptance test criteria for safety critical platform software. It has
been shown that coverage metrics applied in a traditional way will
not give enough evidence for a safety argumentation. We need
coverage criteria that can be applied for safety argumentation in
an acceptance test.

4. It is possible that the BSW is delivered as a black box to the vehicle
OEM. How does the OEM check that the BSW meets the stated
safety criteria in case the source code is not provided?

5. The BSW is highly configurable. It might be very hard to say
anything about the relation between two different configurations

Verify

AUTOSAR

Requirement

Verify

Technical

Safety

Requirement

Verify

Functional

Safety

Requirement

Verify

SafetyGoals

Create

Software Solution

Here we focus on verify Technical

Safety Requirement that are allocated

directly on the platform

Show that a subset AUTOSAR safety

critical requirements and configuration

parameters can be derived

B
ri
d
g
e

 T
h
e
 g

a
p

AUTOSAR Platform

The functional gap between application and platform.

5 AcSäPt – Acceptanstest av säkerhetskritisk plattformsprogramvara

in terms of how well they fulfil the safety requirements of
concern. This is important when building the safety
argumentations for all variants and all versions.

These five problems, and any combination thereof, imply that it is hard to

analyse whether a certain BSW implementation can be regarded safe in a

specific system context.

The AcSäPt Methodology

The AcSäPt project has

addressed all of the above

problems. The overall

methodology is to create a

configurable formal model

of all relevant BSW

components. This model is

used in a number of

different ways that

together solve the

problems specified. In this

section we explain briefly

how we solved the

problems. In later sections

we give a more detailed

description.

The model can be

regarded as an executable

specification of the BSW.

The model is annotated

with the individual

requirements from the

specification documents

(SWS). By executing safety

Coverage

Test scenarios
Call trace

SUT

AUTOSAR
Specification model

State space
left after abstraction

State space
Left after abstraction

Every transformation/
interpretation has fault

models

Safety
Requirments
Allocated to

AUTOSAR BSW

Safety critical
AUTOSAR

Specification

Application
Specification

AUTOSAR
Specification

Transform the safety
critical part of the

modelled
specification to state

space

Abstraction

argumentation

Verification metric of
100%

Comprehensive list of
safety critical

AUTOSARrequirements

Comprehensive list of
safety critical AUTOSAR
configuration
parameters (future
work)

Safety critical
AUTOSAR

Specification of

relevance

State space for
the TSR

functionallity

The AcSäPt methodology.

6 AcSäPt – Acceptanstest av säkerhetskritisk plattformsprogramvara

related application use cases (i.e., uses cases that are associated with

particular safety requirements) that make use of the BSW we can trace

which requirements from the SWS specification are relevant. We use this

information to bridge the gap between the application and platform

context, and identify what the safety requirements are on the BSW. In

addition, we also use the model to determine whether or not a

configuration parameter is relevant for a particular use case.

Our acceptance test procedure allows the BSW supplier to provide the

implementation as black box (i.e., without the source code). Each

implementation is tested until we obtain 100% coverage. The 100% test

coverage is reached when we have tested all requirements within all

possible scenarios and with every possible input. We argue that it is better

(sic!) to use a dedicated test configuration for this procedure, than the

actual configuration used in an ECU. A dedicated test configuration can be

adjusted such that it is easier to reach the 100% coverage.

100% coverage gives argument for acceptance test for any specific context,

not relying on the BSW life-cycle out of context. If the metrics showing

100% is defined carefully this can be used as safety evidence.

To reach our 100%

coverage in practice

(days, not years), we

apply a combination of

formal completeness in

the state space of the

model, and reasonable

fault models of any

implementation. By

applying a carefully

chosen test configuration

we can reduce testing

time by several orders of

magnitude, while still being able to reach get 100% coverage. If the test

Coverage SUT

State space
Left after abstraction

Verification metric of
100%

Coverage of state space after abstractions.

7 AcSäPt – Acceptanstest av säkerhetskritisk plattformsprogramvara

configuration is chosen correctly we can show that the 100% coverage still

holds in the different real ECU configurations of concern.

A Deeper Look into the Models and the Testing

The BSW is modelled as an executable specification in a functional

language. Each BSW module is a model of its own. These models are

composable such that a certain ICC2 cluster (AUTOSAR term for integration

conformance class) may be tested directly against the composition of the

models. Each model is configurable in the same way as the BSW itself, i.e.,

by the same ECU configuration parameters in XML format.

Testing a BSW implementation is done by repeatedly executing the BSW

(compiled for a PC test environment) with a sequence of API-calls (random

valid API calls with valid data) and comparing the actual output to the

output predicted by the model. There are no dedicated test cases for a

SWS requirement or use case. Instead, testing continues until 100% of

coverage is reached (or a failure is detected) with respect to the SWS

requirements considered as safety relevant in a given context. During each

individual test case (that is a sequence of API-calls) we check which SWS

requirements have been covered. In order to reach 100% coverage it is

necessary to generate a number of unusual test sequences, which would

not typically be present if only one feature at the time was tested.

We reach 100% coverage when ‘all’ information in the BSW models are

challenged with respect to the SWS requirements of concern. The model

can be numerous different states and all these states are easily collected,

containing information about requirements, specific API call data, and

timer information. When all possible states have been visited in at least

one test, we reach 100% coverage. From the model point of view this

means that all internal model states of concern have been exercised in the

test campaign. The testing tool stops generating new tests when 100%

coverage is reached. As is discussed below, reaching 100% in a reasonable

test time requires also some argumentation of what kind of failures that an

implementation may have. The argumentation we use is translated into

8 AcSäPt – Acceptanstest av säkerhetskritisk plattformsprogramvara

rules that become part of the model itself, which guarantees the safety

testing to terminate in reasonable time still with high enough confidence

for claiming ASIL D.

The reason why it is possible to reach 100% coverage is also partly because

of the size of the test object. By accessing an ICC2 cluster directly with the

API on its border, both controllability and observability is increased

compared to if only the RTE and the field bus were the interfaces. In this

project we have shown that it is feasible to reach 100% confidence for

some of the modules and clusters as defined by Volvo. A slightly larger

cluster would probably be manageable, but it would require too many test

sequences if the entire BSW was to be tested as one monolith.

The fact that the models are composable and configurable makes them

well suited for testing different sets of safety requirements and different

versions and variants of AUTOSAR basic software.

Reaching 100% Coverage

Claiming a high ASIL is to say that the risk of remaining safety-critical bugs

is very low. There is no way to argue safety integrity by means of test

coverage, except by reaching 100%. Furthermore, we claim that some

popular coverage metrics like MC/DC of the code are insufficient: even

100% MC/DC coverage can slip errors through. Using traditional

requirement coverage is also not enough if this means that we just have to

test each requirement in isolation and not all the strange combinations.

Our conclusion is that 100% coverage to use in safety argumentation

requires that all requirements are tested for all possible scenarios of input

sequences. This means that many unusual sequences needs to be tested,

not only the typical ones that hopefully were used in the first module tests

by the designers themselves.

If we apply this demand for testing all possible input sequences very

strictly, then we would require extremely many test sequences in which

also all possible data paths, e.g. different PDU data values, should be

9 AcSäPt – Acceptanstest av säkerhetskritisk plattformsprogramvara

considered. This cannot work, since there are too many sequences and too

many data paths to consider. Our approach is to maintain the demand of

100% coverage with respect to the state space of the requirement model,

but to make explicit what failure models that we assume for the

implementation. One such assumption is data symmetry for most data

path elements, like the PDUs. This assumption is based on that fact that the

functionality of BSW implementations is based on algorithms that are

independent of the content of the PDUs themselves. If this argument is

assessed as valid, we only need to consider some typical and some corner

cases. These assumptions are annotated in the models and are checked by

the testing tool when checking when 100% is reached. The assumptions are

made explicit and can thus be challenged by a safety assessor. Of course,

they can also be communicated to the BSW supplier as check list questions

regarding the implementation method.

Configuration choice for claiming safety

In current version of ISO26262 it is stated that testing software for safety

should be performed with the actual configuration that will be used. At a

first glance this requirement seems reasonable. In order to get high

confidence it is not enough to test in any other configuration than the one

that will be used in the safety-critical system.

The conclusion of the AcSäPt project research is the direct opposite. We

claim that for most cases we can argue for safety integrity only when using

a dedicated test configuration, and not for an actual configuration. The

reason why we allow a test configuration, is because we can show that this

configuration enables as much of the test model as any of the actual

configurations. We can check this completeness by comparing the

configured models and check that everything that is checked by the actual

configuration also is checked by the test configuration. The problem with

most actual configurations is that they are too large to reach 100%

coverage in reasonable time. The conclusion is that in order to argue for

safety we are more effective when using a test configuration then when

10 AcSäPt – Acceptanstest av säkerhetskritisk plattformsprogramvara

using the actual configuration. The only additional test one does when

using the real configuration is that the configuration tools are correct.

Comparison with other Methodologies

How does the proposed test procedure for safety assessment differ from

other methods of BSW testing and from other methods of claiming safety?

In both the AUTOSAR community and among some OEMs, there have been

defined acceptance tests for AUTOSAR BSW. However, none of these aim

to reach the extreme degree of completeness needed for safety

argumentation. In the acceptance test proposed by the AUTOSAR

community, the BSW is tested on hardware target only accessible through

RTE and field bus. This kind of testing aims at reducing the amount of

problems showing up in the integration tests, and it would be very hard

both to identify the coverage criteria for 100%, and to reach such test

completeness in reasonable time. This test strategy is considered well

suited for its purpose, but not applicable when claiming safety.

In the AUTOSAR BSW non-safety tests done for Volvo Cars so far, there is

evidence that there have been bugs in candidate implementations that

would not have been found when applying traditional dedicated test cases.

This supports the demand for 100% coverage also with respect to unusual

combinations of API calls.

According to how ISO26262 is used today, safety argumentation of BSW

would be equal to claiming ASIL capability (no explicit safety requirements)

mainly supported by process arguments. The AcSäPt recommendations can

be regarded both as a way of being more precise of what is to be shown

safe, and a methodology enabling the OEM to reproduce safety evidence

for several variants and versions at the time.

11 AcSäPt – Acceptanstest av säkerhetskritisk plattformsprogramvara

Summary and Conclusions

The main result of the AcSäPt project is a methodology to perform

acceptance tests by the OEM suited for safety-critical AUTOSAR BSW. This

methodology addresses how to claim safety based on the observations of

the delivered product (product arguments), and is not so dependent on the

review of the development lifecycle (process arguments) as is the case

today. The product-based safety argumentation relies on the fact that it is

possible to reach 100% test coverage with respect to the applicable safety

requirements. The methodology includes identification of the safety

requirements applicable for the BSW. The 100% coverage metrics includes

correctness of functionality in all possible combinations of input sequences

and data paths. The coverage metrics is based on the formal model of the

specification, and no source code of the BSW is needed. The safety

acceptance tests are performed using dedicated test configurations. The

conclusion of the project is that it is better to use test configuration than

actual configuration, in order to show safety.

To conclude, the project shows feasibility of the methodology, and the

recommendation is to continue to apply this for AUTOSAR basic software.

12 AcSäPt – Acceptanstest av säkerhetskritisk plattformsprogramvara

Contact Information

If you have questions, please contact:

Quviq AB Thomas Arts, 070 4388567, thomas.arts@quviq.com

SP Rolf Johansson, 010 516 5546, rolf.johansson@sp.se

Volvo Fredrik Törner, fredrik.torner@volvocars.com

Further Reading

Martin Skoglund, Hans Svensson, Henrik Eriksson, Tomas Arts, Rolf

Johansson, and Alex Gerdes. Checking Verification Compliance of Technical

Safety Requirements on the AUTOSAR Platform Using Annotated Semi-

Formal Executable Models. SafeComp 2014 Workshops, pp. 19-26, 2014.

Rolf Johansson, Henrik Eriksson, Hans Svensson, Kenneth Östberg, Thomas

Arts, Alex Gerdes, and Martin Skoglund. Don’t Judge Software by Its (Code)

Coverage. CARS 2013.

Thomas Arts, Michele Dorigatti, and Stefano Tonetta, Making Implicit

Safety Requirements Explicit - An AUTOSAR Safety Case, SafeComp, Firenze,

Italy; 09/2014.

Rickard Svenningsson, Rolf Johansson, Thomas Arts, and Ulf Norell. Formal

methods based acceptance testing for AUTOSAR exchangeability. No. 2012-

01-0503. SAE Technical Paper, 2012.

Rickard Svenningsson, Rolf Johansson, Thomas Arts, and Ulf Norell.

TESTING AUTOSAR BASIC SOFTWARE MODULES WITH QUICKCHECK.

Advanced Mathematical and Computational Tools in Metrology and Testing

IX 84 (2012): 391.

mailto:rolf.johansson@sp.se

