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1 Summary

Product quality is one of the top priorities for commercial vehicle manu-
facturers. The ARISE project developed machine learning approaches for
the early detection of quality issues and their analysis, integrating multiple
available data sources.
Original Equipment Manufacturers (OEMs) are required to engineer increas-
ingly specialised and custom-built machines, as customers expect more products
with higher uptime and individualised functionality. While on the one hand
product diversity fosters a brands desirability, on the other hand, it burdens
the manufacturer with more complex challenges in quality assurance, main-
tenance and customer service. The higher uptime expectation from the cus-
tomers amplifies this complexity. Under these circumstances, manufacturers
can greatly benefit from an early detection of potential vehicle configuration
and component quality issues.
Nowadays most operators continuously monitor the state of their vehicles
through sensors, wireless communications and telematic equipment. Qual-
ity problems can be detected earlier by analysing this data, i.e., identifying
emerging patterns, discovering trends, and detecting anomalies. Better un-
derstanding of the issues will also allow for more precise solutions to be ap-
plied, for example by choosing between vehicle recalls, redesigning or updates
to usage guidelines.
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2 Sammanfattning (in Swedish)

Produktkvalitet är en av de viktigaste prioriteringarna för tillverkare av kom-
mersiella fordon. ARISE-projektet utvecklade maskininlärningsmetoder för
tidig upptäckt av kvalitetsbrister och tillhörande analys, genom att integrera
flera tillgängliga datakällor.
OEM-tillverkare (Original Equipment Manufacturers) förväntas utveckla all-
tmer specialiserade och specialbyggda maskiner, detta eftersom kunderna
förväntar sig fler produkter med högre drifttid och individualiserad funktion-
alitet. Medan produktdiversitet åt ena sidan främjar attraktiva varumärken,
belastar det åt andra sidan tillverkaren med mer komplexa utmaningar när
det gäller kvalitetssäkring, underh̊all och kundservice. Högre förväntan fr̊an
kunderna p̊a drifttiden förstärker denna komplexitet. Under s̊adana förut-
sättningar kan tillverkarna i stor utsträckning dra nytta av en tidig upptäckt
av potentiell konfigurering av fordonen och brister kring kvaliteten hos kom-
ponenter.
Numera övervakar de flesta operatörer kontinuerligt sina fordons status genom
sensorer, trdlös kommunikation och telematiklösningar. Kvalitetsproblem
kan upptäckas tidigare genom att analysera dessa data, dvs. identifiera
nya mönster, samt upptäcka trender och avvikelser. Bättre först̊a else av
problemen kommer ocks̊a att möjliggöra mer exakta lösningar, till exempel i
valet mellan att återkalla fordon, designa om eller uppdatera riktlinjerna för
användningen.
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3 Background

Product quality is a top priority for commercial vehicle manufacturers as it
links to nearly all aspects of the ownership and operation of a fleet of vehicles.
The key aspects of ownership are safety, productivity and maintenance, all of
which are crucial to the customer, be it a hauler, bus operator or taxi service.
Hence, keeping track of failure rates of different components is important.
Growth in the number of failures for certain components is often an indicator
of a quality issue. This will also translate into an increase in costs that a man-
ufacturer has to pay on warranty claims and a decrease in customers’ trust
and satisfaction. Therefore, it is important to detect the imminent increase
of the claim rate as quickly as possible, or even to predict it before it happens.
Analysing WCs [Karim and Suzuki, 2005, Kalbfleisch et al., 1991] with the
aim of deriving useful knowledge from products during their operations en-
ables the manufacturers to increase awareness of the quality problems. It also
supports Original Equipment Manufacturers (OEMs) in making decisions to
initiate corrective actions as soon as possible. Predicting warranty claims,
however, is a challenging task. The on-going demand for higher vehicle pro-
ductivity requires increasingly specialised vehicles. This increasing diversity
makes it harder to predict and detect quality problems, as they are usually a
result of the combination of a specific use case, vehicle configuration and am-
bient conditions. Hence, a failure can be caused by different factors, across
different components and be due to different usage patterns. In complex
systems such as modern heavy-duty trucks there are thousands of potential
components to monitor, with complex inter-dependencies. Sensors, wireless
communication, and instrumentation such as telematic equipment support
OEMs to continuously monitor the vehicles during their operation. This has
enabled a variety of services such fleet monitoring systems and predictive
maintenance.
Over the past decades significant efforts have been undertaken among re-
searchers and manufacturers to develop various types of algorithms in or-
der to decrease the amount of quality problems by means of early predic-
tion [Kleyner and Sanborn, 2008, Corbu et al., 2008].Despite the significant
progress in this area, most of the work on predicting warranty claims in-
volves age-based approaches (both in terms of time and mileage) without
taking the vehicles’ usage into account, despite the fact that only such multi-
dimensional data contains complete information. However, there are several
recent investigations in the automotive domain on using Machine Learning
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approaches for predictive maintenance where the usage of vehicles is con-
sidered [Nowaczyk et al., 2013, Prytz et al., 2015]. We believe that warranty
claim prediction could be formulated in a similar fashion so that it can benefit
from logged sensor data collected on-board vehicles.
Reducing the impact of quality issues requires monitoring and exploiting
the data logs of individual vehivles. Significant cost savings will be achieved
through combining on-board data, which is now being accessible via telemat-
ics solutions, with existing in-office knowledge including logged vehicle data,
warranty claims, technical reports, and expert knowledge.
The ARISE project developed machine learning methods for automatic qual-
ity analysis that supports experts in their daily work. In particular, the main
focus of this project is to address two issues that are significant costs drivers:
early detection of emerging quality issues, as well as clustering and categorisa-
tion of new, incoming warranty claims. To this end, the proposed approaches
exploit and integrate the available data sources such as vehicle logging data,
claim data, technical vehicle specifications and other in-house structured and
unstructured data. This combination of data sources is clearly Big Data in
the context of automotive manufactures. Historical warranty and quality
databases are large, and the latest generation of vehicle monitoring solutions,
based on telematics, has the potential of being Big Data on its own. This
combination of data sources is clearly Big Data in the context of automotive
manufacturing. Historical warranty and quality databases are large, and the
latest generation of vehicle monitoring solutions, based on telematics, has
the potential to being Big Data on its own.

4 Purpose, research questions and method

The project consisted of several technical parts where multiple solutions were
developed to understand and handle the quality issues. The ARISE project
exploited the existing data in a novel way for the early detection of arising
quality problems in vehicles already on the market. In essence, the project
developed algorithms and models to detect arising quality problems and visu-
alise them in an intuitive way. The following work packages were included in
the project:

• Work package 1 and 2 were about quality issue detection and analysis,
respectively. We constructed algorithms for the detection of quality
issues based on anomaly detection; historical information about past
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cases; following trends in the data and detecting changes in them. In
the second work package we analysed and evaluated existing, as well as
designed new algorithms for discovering the correlations between qual-
ity issues and various parameters such as vehicle usage, its configura-
tion, the market, etc. The algorithms we have developed were mainly
based on supervised (classification or regression) machine learning ap-
proaches.

• Work package 3 was about the warranty case recommendations, in
which we investigated how quality issues should be described, com-
pared and clustered. We have also performed analysis of historical
quality journals, to improve the understanding of how discovered qual-
ity issues can be addressed, and how current processes in this area can
be improved in the future.

• Work package 4 was about the demonstrator. This demonstrator was
constructed based on the algorithms which were developed in work
packages 1-3. These results are mainly implemented within the existing
IT system used by the Q&CS department. Additionally, an external
data analysis platform enables the results to be fed back to the warranty
analysis process.

• Work package 5 was about the management and reporting, where the
former part talks about the daily management of the project, and the
latter one corresponds to project specific reporting, such as Vinnova
reports and meetings.

5 Objective

The ARISE project started with the specific ambition to study the issues
mentioned above. The expected results, as stated in the application, were:

a. A new framework to detect quality issues in the vehicles and root-cause
identification.

b. A comprehensive analysis of Quality Journals (QJs) and historical qual-
ity issues.

c. A prototype for anomaly detection to compare the behaviour of healthy
and non-healthy vehicles.
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d. A tool to detect sub-optimal vehicle configuration.

e. A number of scientific publications

The results in the following sections address each of these stated goals.

6 Results and deliverables

The ARISE project consisted of three primary directions for exploration
of data concerning warranty claims: logged vehicle data (LVD), diagnostic
trouble codes (DTC) and quality journals (QJs). From this perspective the
results obtained can be divided into two main groups. The first are predict-
ive models used for forecasting the number of warranty claims, which can
be used to improve early detection of quality issues. These models are built
from the LVD data and from exploiting Diagnostic Trouble Codes (DTCs),
including classification and regression methods. The second are deliverables
related to the data mining of the quality journals and historical warranty
claims. These separate focus areas have lead to presentations, software and
several conference and journal publications. In this section we will present
an overview of the insights we have obtained.

6.1 Contribution to FFI & BADA goals

We have contributed to the following FFI goals:

• Effective and efficient quality control
Faster and more accurate quality control increases the overall product
development efficiency. This strengthens competitiveness of Volvo as
well as the Swedish automotive cluster.

• New approaches developed within the automotive industry
Solutions developed in ARISE push the technology to the forefront of
Big Data within the automotive industry. This increases the need for,
and importance of, highly skilled personnel and providing new career
opportunities in Sweden.

• Safer and sustainable society
Safer and more environmentally friendly vehicles with higher quality
reduce waste and contributing to a more sustainable society through a
prolonged product life time.
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• Improving the knowledge on data analytics ARISE increases the know-
ledge and competence on data analytics within Volvo. With more and
more data being collected by the automotive industry, it is important
to continuously explore new ways to use this information for increasing
competitiveness. This strengthens innovative capacity, not only within
Volvo but also in Sweden.

• Increased competitiveness in Swedish research community and industry
ARISE contributes to the Swedish research community through the
cooperation between Halmstad University and Volvo. The research
focuses on machine learning algorithms for doing pattern recognition
and statistical modelling on streaming data. New methods developed
in the project, originally tailored for the automotive industry, can later
be extended to cover other business areas – Halmstad University has a
history of successful technology transfers of this kind.

We have contributed to the following BADAs goals:

• Business
The project showcases the business benefits that are associated with Big
Data. Unknown or wrongly categorised quality problems can be very
costly and any method that allows for earlier and more precise detection
is very valuable for vehicle manufactures. ARISE demonstrates that by
combining multiple already available data sources it is possible to re-
duce the detection time and increase the root cause precision, which in
return lowers the impact of quality problems. Arise combines a wide
spectrum of competences, combining research (HH), advanced engin-
eering (Volvo Advanced Technology & Research, AT&R) and product
development (Volvo Quality & Customer Satisfaction, Q&CS), provid-
ing plenty of opportunities for knowledge exchange.

• Technology
The second result of the project is evaluation of the quality of the avail-
able data, in terms of quantifying the business benefits that they can
provide. For a number of years now Volvo and Halmstad University
have been collaborating on developing new anomaly detection and ma-
chine learning algorithms that are particularly suitable for automotive
industry. That work has primarily been focusing on the diagnostics,
predictive maintenance and uptime areas. In the ARISE project it has
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been extended to create novel algorithms for early detection and ana-
lysis of quality problems in vehicle populations. In particular, the Big
Data aspect is an important issue to handle, as populations of hundreds
of thousands or even millions of trucks generate huge amounts of data
that needs to be processed in an efficient manner. ARISE also covered
the human-machine interaction aspects of advanced machine learning
algorithms. Due to the involvement of product development experts in
the project, we have put an emphasis on precise methods for evaluation
of both existing and new algorithms. ARISE showcased the proposed
methods in a demonstrator based on historic and new quality cases.

6.2 Early Prediction of Claims Using Claim data and
LVD

Incremental Failure Rate Prediction

In this experiment we only focus on the claim data to build our prediction
model. Thus two questions are investigated; first, how much past failures can
be used to predict future failures? Second, as the in-service time of vehicles
increase, how much does this incremental information help forecasting.
The setting of the problem to answering the two questions is as follows. Let’s
define production dates as pd1, pd2, ..., pdt. At each production date, a batch
of vehicles are produced which for pdi are denoted as vbi. Also, let’s define
the time in-service parameter as st. The st parameter is the parameter that
is going to be incremented as time in operation of vehicles increase, and
hence more data related to failure can be acquired. Also, note that for each
vehicle, failure must be calculated from the operation start data. Having
defined these parameters, now the number of failures for each production
date can be defined as follows.

F st
i =

∑
v∈vbi

f st
v (1)

In Eq.1, f st
v is the number of failures claimed by vehicle v during st. In order

to find the failure rate Fi is normalised by the number of vehicles in the ith
batch which is denoted as ni.

FRst
i =

F st
i

ni

(2)
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As the in-service time increases the number of failures will be increased.
So, for instance, if we set the level of granularity for st to be one month,
then F st=2

i counts number of failures in both first month and second month.
Therefore, it is basically the cumulative sum of failures during the chosen
duration.
To answer the first question —how much past failures can be used to predict
future failures— the correlation between failure rate during chosen months
in-service and final chosen number of months in-service will be calculated.
Then, a linear regression model will be used to predict future failure from
past failures.
To answer the second question —as the in-service time of vehicles increase,
how much this incremental information can help forecasting— the in-service
time will be increased and the corresponding correlation will be calculated.
In other words, we will look at how much correlation will be increased as
more information about failure will be gathered.

Experiment 1: analysing the correlation between failures in an
incremental fashion: To analyse the correlation of failure rate in an in-
cremental manner, failure rate after 12 months in-service is considered as the
target (FRst=12

i ).
The result reported in Table.1 is for all component groups. It can be seen
even after one month in-service the correlation to failure rate in 12 month
in-service(FRst=12

i ) is 0.783, which is quite considerable. And, as expected
as the vehicles months in-service increase the correlation will increase.
Figure.1 shows the result of applying regression on past failures as dependent
variable and 12 months in-service failure rate as independent variable. For
visualisation purposes, the line-plots show three different duration in service
(one, six, and 12 month(s)). However, for the bar-plot, Mean Absolute Error
(MAE) is shown for all different months in-service. As expected, the error
decreases as the months in-service increases. The over-estimation of the
regression model is due to the fact that there are some production dates
where the ratio of final failure rate to earlier failure rate are much higher
than the other production dates. These production dates cause a larger
slope for linear regression model which results in over-estimation.
According the result that we obtained and reported above, we can conclude
that past failures can be a valuable source of information to forecast future
failures. Moreover, as more data is collected about the past failures the ef-
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Table 1: Incremental failure rate correlation

Month in service corr(FRst=i
i ,FRst=12

i )

st = 1 0.783
st = 2 0.823
st = 3 0.854
st = 4 0.886
st = 5 0.910
st = 6 0.930
st = 7 0.948
st = 8 0.963
st = 9 0.974
st = 10 0.986
st = 11 0.995

fectiveness of the past failures is becoming bolder.

Classification

In this section we illustrate how machine learning algorithms can be lever-
aged for failure detection taking into account not only age and mileage, but
multiple parameters which express vehicle past behaviors during their oper-
ations. Before conducting the prediction process, the integration is needed
to merge the LVD and claim datasets, creating an integrated dossier with
both the usage and failure information for all the vehicles. We merge the
two datasets based on vehicles Chassis id, Date of readout and Date of claim
report. To this end, we select a time-window of one month preceding each
warranty claim, and consider this to be the interval in which the symptoms
of imminent failure are most likely to be visible, and when the vehicle usage
has the highest effect on a failure. The conceptual view of labelling positives
(non-healthy vehicle) and negative (healthy vehicle) target values in LVD
data as a merge process.
We keep this integration setting for this classification problem and imple-
mented multiple experiments as follows:
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Figure 1: Failure rate of production dates for different month(s) in-service.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
one-month

LVD data with target values --0 & 1--

0 0 1 0 0 0 0 0 1 0 0 0

A  claim reported
between r3 and r4

A  claim reported
between r9 and r10

Figure 2: Overview of the labeling process.

Experiment 1: component failures detection based on Logged Vehicle
Data stream in a short time interval before the failure In this ex-
periment we look at two alternatives of Monthly and Seasonally settings.
We focus on the issue of predicting warranty claims taking into account the
usage of vehicles in the past. The detailed information of how we construct
monthly and seasonally experiments are shown in Figure 3. and described in
the following sections:
Monthly: To construct the training set in this monthly experiment, data
from 2016 and 2017 were taken into consideration, and data from 2018 is
used for validation part.
To train the model, we employed GradientBoostingClassifier (GB)1, which

1We have used sklearn library in Python to build the model
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Figure 3: The Construction of Training and Test Sets in Classification.

Accuracy in Different Months in 2018

(a) Monthly

Accuracy in Different Months in Spring

(b) Seasonally

Figure 4: Monthly and seasonally accuracy in 2018.

works based on a type of decision tree (CART) [Steinberg and Colla, 2009].
Once the model is trained using data from 2016-2017, the test set is used
to validate the classification method in the form of 12 partitions, which is
shown in Figure 3. Starting from 1 to 12, each partition includes the data
logged in that specific month over the year of 2018. Hence, the samples from
all vehicles e.g., in the first month, is considered as one partition, and used to
validate the model for that particular month. The result from each partition
is depicted in the plot in Figure 4a.
Figure 4a shows the monthly accuracy performance over the year. Within
the twelve months validation, the maximum performance that we could ob-
tain is 50% correct classifications in the last month. The unbalanced data
in the training and test sets might be the reason of this low accuracy per-
formance throughout the year. Although the accuracy value indicates low
performance, this figure with regards to the very low baseline shows an ad-
missible result. In addition, the GB classifier provides the area under the

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
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curve (AUC) [Bradley, 1997] with 0.66 (average over all partitions in the test
set) showing that the model works better than random classification. To
have an in-depth look at the performance of the prediction over time, a dis-
tinguishable pattern can be seen between the first and the second six-month
of the year. It basically reveals that over the months the data is getting
more meaningful which has a contribution to the model. This explains the
consistent growth of the accuracy through months.
Seasonally: To evaluate this experiment we have trained the model based
on data logged during the Spring and Summer (March–September) over two
years, and validated it over the same period the following year. For this ex-
periment, in total 20.000 data points are considered for training set and 3720
for validation set. The conceptual view of training and test sets in monthly
and seasonally experiments are illustrated in Figure 1. Similar to the monthly
evaluation, we observed that accuracy over the first six-months is increasing
starting from 43% to 48%, however we did not obtain a high accuracy value.
Taking into consideration both monthly and seasonally plots, we can observe
quite similar results in accuracy metrics. In contrast with monthly, though,
a much worse AUC value of 56% was achieved in this experiment. To have
an in-depth look at both monthly and seasonally evaluation results, we can
observe a very similar pattern for the common months with respect to ac-
curacy rate. Thus, to conclude, we can state that LVD data has a potential
value for early claim prediction over time, and the performance of this claim
prediction – for a component in the injection system – is not dependent on
the seasonality.

Experiment 2: failure risk detection based on Logged Vehicle Data
stream without specifying the time of the failure In this experiment
we intend to assess whether or not the proposed system is able to predict
which vehicles are at risk of failure much more accurately then when this
failure will occur, in particular predicting healthy and non-healthy vehicles
taking into account a component relates to the exhaust system. Hence, to
conduct this assessment, we distinguish two types of vehicles: healthy and
non-healthy ones. Healthy vehicles are those that do not have any failure
claim during their lifetime, while non-healthy ones have at least one failure.
At this stage we do not, however, distinguish when the failure happened. To
differentiate from the previous experiment, here we consider a component
which is part of exhaust system. We have also selected a balanced data set

FFI Fordonsstrategisk Forskning och Innovation — www.vinnova.se/ffi
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consisting of 7.000 data samples. Then, 100 iterations have been executed
to randomly select 20% of the data as the test set and the rest of the data
is considered as the training set to build the model. Receiver Operating
Characteristic curve is depicted in Figure 5. It shows that the BG classifier
performs very well in predicting the healthy and non-healthy vehicles, with
AUC = 0.86. True negative and true positive ratios depicted in the confu-
sion matrix (see Figure 3, left side), demonstrate a high performance of the
classifier (0.84 and 0.73, respectively).

ROC_AUC for: Exhaust System
 

(a) AUC-ROC (b) Confusion matrix

Figure 5: Performance Evaluation for Experiment 2.

Based on these results we can conclude that although the model cannot express
when a vehicle is going to fail, it performs very well by identifying vehicles
which will have a failure during their lifetime. In addition, taking together,
Experiment 1 and 2 are the part of our investigation to achieve the ‘Objective
1’ introduced in Section 5.

Experiment 3: hidden information extraction and its relations to
the performance of the system and claim ratio This experiment seeks
the hidden pattern that can be extracted from the vehicles usage and its effect
to increase the performance of the recognition process, as well as expressing
whether or not the changes (in particular significant) in vehicles usage can be
a source of failures in vehicles during their operations. In order to reach to
the above objective, we developed the feature extraction module to generate
new features, not with combination of others to reduce the dimensionality
of the data, but to find the hidden information that can not be recognised
and used by feature selection, and merge to the selected features before the
classification algorithm takes place. The integration of these two feature se-
lection and extraction processes support our proposed approach to preserve
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the original data characteristics for interpretability, and reinforce to higher
discriminating the data samples using the new extracted pattern. In this
part of the experiment, we have excluded categorical data, and focus in our
approach only on the parameters which are logged using various sensors.
Since these parameters express the cumulative data, their values are con-
tinuously increasing over time. Thus, to measure the conditions and usage
within a given time period, we calculated the difference between each data
point, and classified the changes into four levels: significant, moderate, low
and no deviation.
Figure 6 shows an example of significant and moderate changes, highlighted
by red and blue. These subplots show the changes in three different features
(F1, F2 and F3) from two distinct vehicles (V1 and V2). As can be seen in
the plots, these movements (up and down) are distinct in two vehicles. As
an example, in Figure 6a, there are two significant changes that happened
between months 7 and 8 in 2017, and similar changes monitored in the same
duration in 2018. Another obvious pattern can be seen in Figure 6b, where
two significant changes are observed between months 7 and 8 of the years
2017 and 2018, respectively. This hidden information indicates a form of
pattern in the usage of vehicle that needs to be used for building the model
in Learning and Prediction module. The green line in all the subplots also
shows the average movement in the changes during the vehicles operation.
Thus, to construct the data set to be trained by the classifier, we have merged
these extracted changes as extra parameters to the list Fs, to get Fse =
{f0s, f1s, f2s, . . . , fms, f0ex, f1ex, . . . , fmex}, which can be exploited further
to build the model.
Exploiting the above extraction pipeline we conducted two sub-experiments.
In the former, we tried to assess whether or not the hidden pattern can
contribute to improving the prediction performance, and in latter we attempt
to find the significant changes in vehicles usage pattern from the extracted
information and their relation to the claim ratio.

Experiment 3.1: In this experiment, similar to experiment 2 we focus on
healthy/unhealthy vehicle discrimination, without taking time of failure into
account. The extraction pipeline is used to derive an additional 18 features
including the deviation of vehicles’ usage in different time periods. Hence,
39 features, consisting of the original and the extracted features, were taken
to train the model using the same classifier. Then, we repeated the same
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(b) F1-V2
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(c) F2-V1
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(d) F2-V2
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(e) F3-V1
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(f) F3-V2

Figure 6: Usage changes between different features

experiment which was done for experiment 2.
In Table 2 the comparison between experiment 2 and experiment 3.1 is il-
lustrated by the two sets of features. Concerning AUC and true positive
rates, which are significantly important for our classification problem, we
can clearly observe that patterns collected from the Extraction module have
a value to increase the performance of the prediction. Although 7% decline
in TNR is obtained for this observation, more than 10% improvement from
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True
Positive

True
Negative

AUC
# of

Features

Different Changes:
Significant, Medium and Less

Function
Group

Negative Positive
Feature
selection

0.73 0.84 0.86 19 x x
Exhaust
System

Feature
Extraction

0.84 0.77 0.89 38 yes yes
Exhaust
System

Table 2: The results comparison between experiment 2 and experiment 3.1.

73% to 84% in TPR (predicting the failures) brings out the potential value
of the hidden information at building the model. AUC is also slightly im-
proved, taking into account these high numbers of samples, 3% indicates an
admissible improvement for this warranty claim prediction w.r.t the previous
setting experiment.

Experiment 3.2 In this experiment, we used the extracted features and
try to calculate the number of different changes in the style of vehicle usage
during the vehicle operation. For example, the number of significant drops
and raises (see 2b between months 12 and 14), when the vehicles is operating.
In particular, in this evaluation, we intend to find the correlation between
the number of usage changes and vehicles failures ratio. To this end, we
defined a component including a set of rules in order to assign different sorts
of changes in each reading point. Since vehicles performance are logged in
a cumulative fashion, the changes (CHs) are calculated w.r.t the previous
usage that are illustrated in the box below:

a. If a CH > +30%, then CH=pos sig chg

b. If +30% > CH > +20%, then CH=pos med chg

c. If +20% > CH > +10%, then CH=pos low chg

d. If a CH == 0, then CH=no change

e. If -20% > CH > -10%, then CH=neg low chg

f. If -30% > CH > -20%, then CH=neg med chg

g. If a CH < -30%, then CH=neg sig chg

For example, in rule 1, if a change CH is bigger than the 30% of the previous
usage that was logged and monitored, the change is assigned to a positive
(rise) significant change (CH=pos sig chg), while in rule 7 CH=neg sig chg
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is labelled for the negative change, if the change is less than 30% of the
previous usage. It needs to remark that expert knowledge is used to define
the values in the rule component in order to assign the various types of
the changes. We have implemented this component on each extracted fea-
ture, so then a discritization process is carried out on positive significant
changes (pos sig change) and negative significant changes (neg sig change)
to categorise the calculated numbers–number of changes–into four groups of
high, medium, low and no-changes. This decision has been taken from our
hypothesis that unusual changes in vehicles usages might have the source of
failures. Thus, to find the relationship between the number of changes and
claim ratio, we grouped them in to healthy (0) and un-healthy vehicles (1),
which are shown in Figure 7.
In the plots depicted in Figure 7, the y-axis shows the relative frequency
of changes in four categories which are placed on the x-axis. These sub-
figures clearly reveal that the proportion of significant positive and negative
changes in unhealthy (labelled by 1 in the plots) vehicles are higher that the
healthy (labelled by 0 in the plots) vehicles during their life. In contrast, the
proportion of healthy vehicles are more than unhealthy, when we took into
consideration no-changes to assess the correlation between them. The similar
results have been observed, when medium and less significant changes were
taken to consideration. Basically, the findings express a message that healthy
vehicles have less usage deviation than unhealthy vehicles. We can also look
at the significance of the difference between the changes in these population
(for this test, we only considered the extracted significant changes). Tak-
ing into account the distribution of the changes and in-dependency of the
population in both cases, we exploited the non–parametric Wilcoxon test for
comparison of the changes distributions [Gehan, 1965]; we used it to invest-
igate if the significant changes from unhealthy vehicles are statistically larger
than those from healthy vehicles, and we applied it to all the changes which
have been extracted from the selected features.
Table 3 shows (only 10 features are listed) the result of a Wilcoxon test on the
two populations. As reported in the table, the p-value in all cases is less than
the critical value (0.05) which indicates the two populations are statistically
different by rejecting the null-hypothesis. Indeed, it is not surprising to
obtain such significant difference in all cases, as the two populations contain
remarkably high data samples. Thus to properly quantify these difference
between the two populations, we applied Cohen’s [Fritz et al., 2012] method
to calculate the effect size. The calculated effect size values also confirm that
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(a) Feature 1 (b) Feature 2

(c) Feature 3 (d) Feature 4

(e) Feature 5 (f) Feature 6

Figure 7: Negative and Positive Changes Statistics

there is a difference between the two populations, but in some features we
observe a smaller difference with 0.20, 23 or 0.33 effect size. While in some
other features we obtained 0.50 or 0.47 which show a larger difference w.r.t
the other features.
On the basis of the data above, we can conclude by stating that exploiting the
extracted hidden pattern may be conducive to higher prediction performance
than relying only traditional feature selection process. This pattern also in-
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Component
Wicxon
Score

p-value Status
Effect
Size

PSC P1FX w=816510
<2.2e-16

reject
significantly
difference

0.40

TIME-WIT w=816810
<2.2e-16

reject
significantly
difference

0.41

P1FYO-TO w=798610
<2.2e-16

reject
significantly
difference

0.33

P1L80 TO w=733800
= 6.155e-08

reject
significantly
difference

0.20

PCT DIST w=754770
= 3.599e-08

reject
significantly
difference

0.20

BRAKE M w=771140
= 7.697e-11

reject
significantly
difference

0.31

ERROR C w=865980
<2.2e-16

reject
significantly
difference

0.50

KALMAN w=815470 <2.2e-16
significantly
difference

0.37

MASS AT w=757030 = 4.224e-09
significantly
difference

0.23

CUNS F w=798810 <2.2e-16
significantly
difference

0.38

Table 3: Significant Test and the Effect Size of the Difference. Column
‘Component’, refers to the name of the components in the vehicles so that
we used the short form of the them.

dicated that there is a correlation between unusual changes in vehicles usage
and claim ratio, which answers the ‘Objective 3’ introduced in Section 5.

Experiment 4: analysing the effect of LVD and claim fusion to
improve the prediction In Sec.6.2, LVD measurements are used as the
predictor variables to predict failures. However, past history of failures for a
vehicle can be a meaningful predictor of failures. Taking into account only
LVD measurements, a model tries to establish a relationship between LVD
measurement and failure, while neglecting the relation between past failures
and current failures that the model is trying to predict. It sounds natural to
provide model with both LVD measurements and previous failures so that
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it can use these two source of information at the same to predict failures.
In other words, to take the history of failures of each vehicle into account ,
information about past failures are added to the LVD measurements as new
features.
In order to be able to use these two sources of information, first, each one
of them is explored separately in terms of feature engineering and modeling.
Then the configuration for their fused version is explained.
Past claims for LVD data
To use the other source of information, which resides in Claim database, in
this section the configuration to assign historical failures to each LVD reading
is described.
In the LVD database, for each record, in addition to all measurements,
log date and vehicle id are registered. For each record, by using the Claim
database, the number of failures for the vehicle id before the log date is cal-
culated, denoted as n past claims. As an illustration in Fig.8 number of
claims reported before reading 11 and also reading 12 is four.
In this study, it has been founded the model’s performance will be increased
by including also three more engineered features— derivative of n past claims,
mean of n past claims, and standard deviation of n past claims. An im-
portant technicality is that these statistics must be calculated after train-
test-split, otherwise, there would be information leak and consecutively over-
fitting. In a nutshell, four features are engineered: 1- n past claims,2- deriv-
ative of n past claims, 3-mean of n past claims, and 4-standard deviation
of n past claims.
LVD and past claims fusion
To get the most out of data, the four features related to past claims are added
to the corresponding LVD records. Notice that the features obtained from
past claims don’t contain information regarding measurements, hence many
vehicles could potentially end up having very similar values for these four
features. More concretely because we are using tree boosting methods, many
similar combination of these four features could ended up in tree’s leaves.
The idea is that adding the LVD reading can give the model the possibility
of further meaningful (meaningful in the sense of not over-fitting) splitting
of tree’s nodes.
In this experiments, the forecast interval is considered to be 30 days. Hence,
if a claim accrues after the reading date until the end of the 30 days, then it
is considered as a faulty readout otherwise as a healthy readout. Since there
are large number of categorical features, using the state-of-the-art boosting
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r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

LVD reading

Reported claim

Four claims reported before reading 11

Figure 8: Assigning historical failure to LVD data

method CatBoost (Categorical Boost) seems natural. Since CatBoost uses
various statistics of categorical data, it alleviate to some extend the need for
extensive categorical feature engineering. In Figure.9 AUC curves for five
subsets of features are shown. First, n past claims for each corresponding
readout in LVD and the derivative of n past claims are considered as the
features. As can be seen in Figure.9, the area is 0.605 which is an indica-
tion of a poor performance. However, an interesting observation is that by
adding mean of n past claims, there is a huge improvement according to
AUC which the area is 0.853. As an intuition why adding the mean fea-
ture cause a considerable boost, we can compare it to modeling failure with
Poisson distribution. In failure detection using Poisson distribution one as-
sumption is that the mean of failure is constant over time. Also, mean is
very important in the Poisson distribution in the sense that the number of
failure only depends on the mean value. In other words, Poisson distribution
basically calculate the probability of occurring failures count based on mean
value to compensate for the expected mean. Comparing our engineered mean
of past claims to the Poisson mean parameter, we can gain insight why it is
important. Intuitively, it seems logical to say having mean value as another
feature, the model can compensate to keep the mean value constant. As the
last engineered feature of past claims the standard deviation of n past claims
is added. Adding std gives another boost to the model (AUC=0.938). Again,
the same intuition for mean can be applied for the std feature. It gives the
model the ability to predict in a way to compensate for the fluctuation in
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failures. To see the forecasting power based only on LVD data the result of
CatBoost model only on LVD measurements are reported. The AUC area is
0.924. Now, the idea is to combine LVD and past claims features to see the
effect of this fusion.
The measurements from LVD are added to these four claim-related features
to use the full potential of information. Adding LVD as features leads to
another improvement in AUC (AUC = 0.964). As discussed in section 6.2
the idea is can give the tree boosting model the ability of further meaningful
splitting.
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ROC curves of five different subset of features

past failures + diff (area)=0.605
past failures + diff + mean (area)=0.853
past failures + diff + mean + std (area)=0.938
LVD (area)=0.924
LVD + past failures + diff + mean + std (area)=0.964

Figure 9: ROC curves of five different subset of features

The confusion matrix result for a specific threshold is shown in Fig.10
The results shown in Figure.9 demonstrates that the ‘Experiment 4’ can
concluded by stating that the best result is achieved when LVD and claim
information are combined. Hence, it confirms the idea of using both source
of information to gain higher predictive power.

Regression

In this part of the experiment, we intent to tackle the problem from a regres-
sion point of view. Similar to the classification pipeline, an integration pro-
cess is needed to merge the LVD and claim data. Figure. 11 shows the general
positive and negative target assignment values to LVD readings. Circle-top
events mark positions of LVD readings in time, rv xx in which v is the vehicle
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Figure 10: Normalised confusion matrix for fusion of LVD and past claims

identifier and xx is the index to LVD readings. Diamond-top events indicate
occurrences of failures (i.e. claims), with the same notation as LVD read-
ings (fv xx). Here the targets are as for a binary classifications, in which all
LVD readings within a certain interval leading to a failure (red rectangles) are
marked as faulty (in red) and everywhere else is marked healthy (in green).
In order to transfer this target assignment process to be applicable as a
regression problem the following procedure is applied. First, a time-window
is selected (in this experiment it is selected to be three months). Then,
for each reading, number of failures occurred in the time-window interval is
considered as the target. In other words, instead of calculating if a failure is
happened during the selected time-window, number of failures is accounted
as target. This way, we can approach the problem from a regression point of
view.

Experiment 1: Failure prediction time-based split To conduct this
evaluation, the data from 2016 to 2018-06-01 are considered as the training
set in this setting of the experiment. Then to construct the test set we
took the data which are logged after 2018-06-01, until 2019/02. To train
the model, we employed Random Forest Regression (RFR)2. Once the model
is trained, the test set is used to validate the regression method such that
the vehicles which are logged in that specific dates are fed for validation. In

2We have used sklearn library in Python to build the model
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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Figure 11: Overview of the labeling process in Regression.

Figure 12: Time-based split, thresholding applied

order to get the result in the form of failure ratio, the trained model makes
prediction for each LVD reading, which as a regression model is supposed to
predict the number of failures are going to be happened during time-window
interval. Then, each predicted value is converted to a binary value using a
threshold. Finally, for each reading date, number of LVD readings predicted
as failures are summed and normalised. Figure 12. shows the results obtained
for different thresholds values.
The plot basically shows the percentage of the vehicles predicted to be failed
in the upcoming 90 days. As illustrated in the plot, the green line with a
threshold value of 0.2 relatively follows the trends which is shown via the
black line. It is clear that the green line could follow the pattern till the end
of the year 2018, and then started to have more distance to the ground truth.
The gap between ground-truth and predicted values at the end of 2018 and
beginning of 2019 is mostly due to the sampling effect — number of sample
in that period in the database in much less than the other period.
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Figure 13: Sum: Time-based split

Figure 13 demonstrates the same result with the difference that this time the
regression result is not converted to binary values using thresholds, instead
at each point in time regression result for all vehicles logged in that point
are summed up together and normalised to obtain the failure-ratio.
To conclude, the experiments which are constructed as classification and
regression problems described above were a part our investigation–in ARISE–
to achieve the ‘Objective 1’ defined in Section 5. These also resulted in the
publications, which are listed in Section 7.2.

6.3 Early Prediction of Claims Using DTC

Diagnostic Trouble Code (DTC) are a useful tool for identifying the under-
lying cause of a failure on a specific component. As previously demonstrated
in the In4Uptime FFI project, DTCs can also in specific cases be used to
predict upcoming component failures.
In ARISE, we have investigated the predictive power of DTCs in a broader
sense, looking at the prediction of emerging quality issues within a large and
diverse vehicle population based on the frequency of DTC occurrences. The
investigation has also been broader in that failure of all truck components
have been considered, and triggering of every DTC has been considered as
a predictor. In essence, the purpose of the calculation has been to find out
whether a given DTC can accurately predict faults appearing on components
in a given Function Group (FGRP), which is a collection of parts in a truck
with a common purpose. Warranty claims data was used as the source of
fault information for the function groups.
The calculation considered every combination of DTC and function group
(900 000 in total). The vast majority of such combinations hold no pre-
dictive power (for instance because the DTC concerns the gearbox whereas
the function group describes brake pads), however no manual selection of
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Figure 14: Period based framework consists of three parts, observation win-
dow, lead time and prediction window.

promising combinations was done to get as complete a picture as possible.
The algorithm for assessing the predictive power consisted of calculating
which DTCs were triggered within a time window before a claim on a vehicle
(if a DTC is not followed by a claim in a certain function group, it has no
predictive power for faults in that group), and then aggregating that inform-
ation across the entire population. The correlation for every combination of
DTC and function group was calculated for a number of time windows; the
time windows are useful for determining the prediction time frame of a pair
(i.e. how quickly the DTC can be said to lead to a fault).
In general, very few DTC-function group combinations proved to have a
sufficient correlation for predicting faults. Out of the 900k combinations,
only less than 20 had both high coverage (many failures were preceded by
a DTC trigger) and high accuracy (many DTC triggers were followed by a
failure), which are both necessary characteristics of a reliable predictor. The
reasons for this are related to the purpose of the DTCs - they are primarily
intended for fault diagnostics; not prediction. Many DTCs trigger too often,
giving false signals that diminish their predictive power, and the time scale
between DTC triggering and component breakdown can vary greatly. In
the following section we described the proposed system framework to exploit
DTC predict the upcoming failure.

Interactive feature extraction for diagnostic trouble codes in pre-
dictive maintenance

We develop a classification-based predictive maintenance framework. The
goal is to identify components that are going to fail within a given prediction
window, based on DTC data.
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The first step towards building the prediction model is merging two datasets:
the DTC data and vehicle repair data. The vehicle repair data contains
historical information related to repairs that were performed on a component.
We use period-based approach as a framework for prediction (see Figure 14).
The period-based approach consists of three parts: observation window, lead
time and prediction window. The vector of features is extracted from every
observation window and use as an input data. The observation window is
composed of a set of consecutive time intervals called sub-windows. Each sub-
window spans fourteen days, corresponding to the time interval of DTC data
collection. In this experiment we use random forest models for prediction
task, since random forest algorithm works very fast and tends to perform
well with complex input data. We set a maximum tree depth to 10 and the
number of tree sets included in each stage is equal to 100.
Working with DTCs, there are some common parts of the knowledge which
can be extracted, but we can gain a lot of new knowledge and distinctive
features from experts to develop a framework for predictive maintenance.
Lead time is the minimum time interval that we would like to have preceding
the failure time. A long enough lead time would provide sufficient time to
deal with the failure that might arise. Since the goal of this paper is limited
to outline the relation between DTCs and component failure rather than to
create a generic model, for simplicity we consider lead time equal to zero.
The period based framework predicts the future failure over a certain period,
called prediction window. The class label of an instance is defined positive
if there is any component failure inside the prediction window, otherwise is
set to negative.
We start from a truck’s delivery date to create an instances and then move
the prediction point along the lifetime of the truck by a constant parameter
as moving step. By repeating this process for all vehicles, we can obtain all
the training and testing instances to build the model. The total number of
learning instances would be dependent on the size of the windows generated
from historical data and moving step. Our goal is to perform a thorough
study on factors such as the size of observation and prediction windows and
choices of features that could impact the performance of the classifier.

Experiment 1: Below we present results from experiments aimed at evalu-
ating the proposed framework. These experiments showcase the effectiveness
of extracted features and the idea of applying DTCs in two levels in the learn-

FFI Fordonsstrategisk Forskning och Innovation — www.vinnova.se/ffi

www.vinnova.se/ffi


30

ing process. For all experiments the process of data preparation, instance
generation and feature extraction have been done based on configuration of
experiment. The first group of experiments was devoted to examining the
different parameters that could influence in configuration of proposed frame-
work and as a result the performance of prediction models. For instance,
by assigning different values to length of observation window and prediction
window, different sets of instances will be generated and as a consequence
different results are obtained. Moreover, this experiment leads us to com-
pare the usefulness of different extracted features in predicting the failure of
component. The second category of experiment has focused on evaluating
the effectiveness of combinations of feature classes in prediction.
An air suspension component and a powertrain component have been selected
as example components due to their different functionality. Another reasons
for picking these two components are high failure rate and their attendant
costs. Applying the same set of DTCs as indicator of failures in these two
components enables us to explore the possible relation between DTCs and
failure in each component and to compare the effectiveness of the models in
different parameter settings (e.g. different size of observation window and
prediction window) based on accuracy of classification.
The data used in these experiments includes the records of 1.000 individual
DTCs across 30.000 Volvo trucks with delivery date from January 2015 to
January 2018. In average DTCs are triggered 50 times during lifelong of
a truck. We used data from 22500 trucks to train the prediction model,
and tested the model with data from the remaining trucks. It is also worth
noting that since the set of trucks for training and testing are different, all
the instances of same truck would belong to either training or testing, in
order to avoid possible over-fitting problem.

Performance comparison on different settings The first series of ex-
periments concerns the performance of prediction model taking into account
different configuration of model parameters. This experiment allows us to
investigate how the model reacts to using different levels of DTCs, which
feature provides the better discrimination and most importantly, what is the
best configuration for the size of observation window and prediction window.
For simplicity of parameter tuning, the size of sub-window is fixed to two
weeks. The performance was estimated using five-fold cross-validation. The
cross-validation process is then repeated on training data five times with each
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(c) Historical Count Feature
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(d) Trend-based Features

Figure 15: AUC values with respect to size of observation window and pre-
diction window for powertrain component in aggregated level
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(d) Trend-based Features

Figure 16: AUC values with respect to size of observation window and pre-
diction window for powertrain component in individual Level
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(d) Trend Count Features

Figure 17: AUC values with respect to size of observation window and pre-
diction window for air suspension component in aggregated level
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(d) Trend Features

Figure 18: AUC values with respect to size of observation window and pre-
diction window for air suspension component in individual levels
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of the five folds used exactly once as validation data. After that, five mod-
els have been built based on the divisions of training data and the models
were applied to test data. The reported results are based on performance of
classifier on test set.
Two target components have been used in these experiments (an air sus-
pension and a powertrain component), since different components have dis-
tinctively different degradation times and mechanisms. Other parameters,
such as the size of the prediction window (which corresponds to the lead
time needed to schedule a workshop visit) also depend on business require-
ments that vary across different components. Therefore, the same setting of
parameters cannot be applied for different components in deployment and
it is vital to examine carefully which setting is more appropriate for each
component.
Figures 15 and 16, as well as 17 and 18 show the results for different ex-
perimental settings: aggregated and individual DTC levels, respectively, for
powertrain and air suspension components. The subplots (a-d) demonstrate
different categories of extracted features, in particular how area under ROC
curve (AUC) changes depending on different settings for prediction and ob-
servation windows.
Generally, when using the base count features on DTC data suggests that
smaller size of observation window leads to better AUC; this is more pro-
nounced in aggregated level, but also shows in individual level. One inter-
pretation of this pattern is that most relevant DTCs occur close to failure
date, therefore enlarging size of observation window will reduce the inform-
ativeness of the input data. On the other hand, combined count features
give better result with larger observation window. This led to the hypothesis
that by applying combined count features, we add more information to the
model and summation of values from multiple DTC readings work better
than a single reading from DTC. The large jump in AUC for combined count
features, is because the number of instances is considerably smaller and the
task of prediction is easier for classifier.
According to figure 15(c), defining more features by taking the reading from
former sub-windows doesn’t improve AUC. The lowest range of AUC val-
ues belongs to trend-based features. Figure15(d) suggests that trend-based
features cannot play a significant rule in prediction of failure and there is
no pattern between size of observation window and prediction window and
accuracy of model applying this feature.
Comparison of results indicates that base count features in aggregated level
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German trucks,
warranty claims

and QJs

Claims

Quality Journals

combine Claim rates

QJs and hit rates

function group
dates

select

DATA COMBINE AND SELECT PLOT

Figure 19: This figure shows the data processing pipeline. Quality journal
and warranty claim data sets were combined to provide a historic overview
of quality journal usage and claim trends.

work slightly better than individual level. Another observation is that the
classification model trained with base count features or historical count fea-
tures have better performance than trend based features. But the improve-
ment in AUC for historical count features compared to based count fea-
tures, which is provided by adding values from former sub-windows is non-
significant.
This experiment and evaluation of early prediction of claims using DTC has
resulted in a publication reported in Section 7.2.

6.4 Quality Journal Exploration

Volvo keeps information about warranty claims, reparations under warranty
and so called quality journals. Quality journals contain a log of (potential)
problems and resolutions related to a specific component (function group)
for a certain vehicle class (long haul, short haul). These can be created for
several reasons; an increase in warranty claims, security concerns, or a change
in the production process.
We were provided with data sets containing historic information about war-
ranty claims and quality journals for German trucks. The data sets covered
about six years of data, from 2012 to 2018. This data was explored along a
number of different paths as follows.

• claims on claim date (showing seasonality) or on production date (show-

FFI Fordonsstrategisk Forskning och Innovation — www.vinnova.se/ffi

www.vinnova.se/ffi


37

Figure 20: Number of claims per month for a single function
group, narrowed down to German trucks, over a five year
period.

ing production problems). Normalised on warranty volume or produc-
tion volume.

• trends in claims, similar behaviour, ...

• claims for trucks in a certain production month claims over time for a
certain function group

• claim rate and hit rate calculations

• success of a quality journal

• general statistics on quality journals

We illustrate the observations that can be done from the data by going
through the claims for a certain function group in a five year period.
The following figure (Figure 20) shows the number of claims received per
month for this function group. It shows that the number of claims started
to increase suddenly.
Parallel to this we can show the number of claims for the function group
related to the production month of the vehicles. Figure 21 shows that the
increase in claims observed above are related to trucks produced after the first
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Figure 21: Number of claims per production month for a
single function group, narrowed down to German trucks, over
a five year period.

three years and onward. It typically takes a few months before production
problems can be seen in the monthly claim rates. It takes some time before
a vehicle has left the factory, has been taken into production and the fault
has manifested itself.
For each production month, we can follow the produced trucks over their
24 (or 12) month warranty period, and plot the resulting claims in each
(warranty) month. Figure 22 shows this for trucks produced in a one year
period. As in the previous plot, the data is narrowed down to German trucks
and for the same function group. In this plot, we see that until the end of
the year, there are a few claims following each production month, and the
bulk of the claims falls in the first 15 months after production. In the end,
we see a larger number of claims starting from five months after production.

Quality Journals

We also had access to the quality journals related to this, and other, func-
tion groups. Using the information contained in the quality journal, we can
overlay several key data points on the plots showing the number of claims
per production month. The following figure shows an example. In Figure 23
the start and end dates of one of the quality journals related to the function
group are shown. The long horizontal light blue line in the middle of the plot
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Figure 22: 3D plot showing the claims in the 24 months fol-
lowing a number of production months. The last production
month in the plot, in purple, shows a significantly different
pattern compared to the 12 months preceding it.

shows the in which months the quality journal was active. The two smaller
blue lines on the left and on the right show the three months period before
and after the quality journal was opened. If we look at the three months
before the quality journal was opened, we see a rising number of claims re-
lated to the function group. We call the average number of claims in this
period the claim rate. About halfway through the quality journal period,
the number of claims is still high, but it starts to fall (note that the dip in
August is probably caused by the low number of trucks produced in to the
summer holiday).
The plots show an interesting picture, but note that they are normalised
on the total number of trucks under warranty. While we had access to the
number of claims tied to a certain function group for the trucks produced
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Figure 23: Claim rates during the time a quality journal was
active.

on a certain production date, we did not have access to the trucks or truck
models which were affected by the quality journals. Quality journals often
target a specific model or sub-population of the fleet.
From the claim rates before and after opening a quality journal, we can
calculate the hit rate. The hit rate is defined as the ratio between the claim
rate after closing the quality journal and before opening it. A hit rate of less
than one means the number of claims decreased, giving a measure of success
to the quality journal. Calculating hit rates for certain time periods or for
certain groups of components can give an insight into the quality journal
operation.

Quality Journal Statistics

Looking at the hit rates, we can get a sense of the quality journal usage;
were they successful, how long were they open, is there a relation between
the length (time) of the quality journal and its hit rate, or which function
groups had successful quality journals. In the left hand side plot of Figure 24
we show the length (in days) a quality journal has been active on the day is
was closed, aggregated by monthly average. On the right hand side, Figure 24
shows a histogram of the number of quality journals of a certain length (in
days), up to one hundred days in length.
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Figure 24: Left side: Length in days a quality journal has
been active on the day it was closed, aggregated by monthly
average. Right side: Quality journal length distribution

Seasonality

Some components suffer to varying degrees under varying weather conditions.
Batteries are known to perform worse under lower temperatures, whereas an
air conditioning unit would typically only be used, and break down, when
temperatures are higher. These trends can be observed from the dates the
warranty claims were submitted. Figure 25 shows the warranty claims for
a heating unit on the left. The number of claims follow a seasonal pattern
with more claims in the winter months than in the summer months. On the
right hand side, we see an auto correlation plot for the same data, showing
correlation at the twelve months point. If we look at the claims related to
production month in Figure 26, and the associated quality journals for this
function group, we don’t see the same clear seasonal pattern we observed
in the left plot. We do however see an increase in claims related to trucks
produced in a certain point of time. The plot also shows the associated
quality journals, suggesting there was a problem which was detected, logged
and fixed.

Claim Patterns

Next, we look at the claims after production for one or more function groups.
We can take the number of claims on each of the 24 warranty months after
a certain production month, and collect them in a single plot. The left side
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Figure 25: Claims on claim date. The left plot shows seasonal
variations in claim rates. On the right, an auto-correlation
plot for the data on the left is shown.

Figure 26: Claims related to produc-
tion month are shown, together with
several quality journals.
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Figure 27: Distribution of warranty
claims after x months of production
for a five year period, or 60 produc-
tion months.

Figure 28: Left side: warranty claims after x months of pro-
duction for five production years. Right side: patterns of
claims related to production date for all function groups re-
lated to electrical problems.

plot of Figure 28 shows these patterns for a certain function group. The plot
shows all the production months since 2010-01 where we have data. In this
plot, claims increase after the first six month of operation. Figure 27 shows
a box-plot of this data.
We can create similar plots for multiple function groups. The left side plot
of Figure 30 shows the claims in a five year period for all the function groups
related to electrical problems. Most of the trends are low and flat (just a
small number of claims each month), but three stand out. The first one has a
high number of claims over most of the period. The next one has a problem
at the end of the period, and the third component appears to have had a
problem in the beginning.
The code to explore the claims, quality journals, claim and hit rates was
used to create an interactive web based exploration system, one of the tools
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Figure 29: Claim patterns for all com-
ponents belonging to the same main
class.

Figure 30: Left side: Outliers. Right side: claims without
outliers.

delivered in the ARISE project.

Outliers

We can apply clustering algorithms or other heuristics to detect outliers in
the above plots. The following plot, Figure 29, shows the claim patterns
for all the function groups related to a certain main class. Using different
clustering algorithms, we get nine outliers out of a total of more than one
hundred function groups.

6.5 Detecting Sub-optimal Vehicle Configurations

Trucks are highly flexible products, aimed to serve a broad variation of cus-
tomer needs. There are hundreds of options available when selling and con-
figuring a truck and the number of possible combinations is almost infinitive.
A correctly configured truck is crucial to give the customer an attractive
transport solution when it comes to fuel consumption, load capacity, driver
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Figure 31: The conceptual view of the tool.

appeal, etc. Add body and trailers, that also have to correspond to the cus-
tomer needs and to each other, and the complexity goes up even further. A
mismatch between truck configuration and actual usage can lead to low pro-
ductivity and customer dissatisfaction but also to quality problems. These
kind of issues can be difficult to identify, as they are not originating from
any individual component’s quality deficiency, and it requires good insight
into the customer’s actual usage to be able to identify them.
In ARISE we have developed a tool – see Figure 31 – that can be used as
a platform to analyse these kind of problems. A configurator takes vehicle
log data and generates an ‘optimal’ configuration. At this stage, this is only
possible for a limited number of vehicle part, i.e., the drive line with engine,
gearbox and rear axle ratio.

7 Dissemination and publications

7.1 Dissemination

Multiple Volvo internal workshops and project presentations have been held
during the project to discuss the progress of the work. The final results are
also going to be presented at the Volvo Tech exhibition event in Göteborg.
The date for this exhibition has not yet been confirmed due to the availability
and capacity of the venue. At this event, we will present the results obtained
in ARISE including tools, frameworks, data analysis, etc. in the form of
posters and interactive discussions.
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As a part of the ARISE result, we will also give a presentation at the EPIA
Conference on Artificial Intelligence in September 2019. EPIA is a well-
established European conference in the field of AI.

In ARISE, we contributed to the development of multiple tools and frame-
works for various purposes as follows:

• Forecasting claim rates using LVD data (Section 6.2) was a prove of
concept that information about usage in addition to the past claim
information can improve the prediction of claim rates. Currently, Volvo
is investigating the possibility of integrating some of the LVD feature
in the QRAFT platform. Moreover, similar feature extraction methods
have been used by the experts in Q&CS.

• We have shown in Section 6.3 that certain occurrences of Diagnostic
Trouble Codes (DTCs) are indicators of faults appearing on compon-
ents in given Function Groups (FGRP). This knowledge enables the
experts to distinguish between accidental appearance of DTCs and root
cause identification through DTCs. This algorithm has been implemen-
ted and integrated in a Volvo quality system called QRAFT in a way
that the expert can search for correlations between DTCs and function
groups.

• Quality Journal analysis, Section 6.4, provided a measure to higher
level management working at Q&CS and component responsible for
calculating the effectiveness of quality journals. This measure takes
into account resources, Quality journal duration as well as claim rates
before and after deployment of the solution.

• Finally, we have developed a tool/platform for proposing vehicle con-
figuration based on customer needs within the hundreds of options
available. This is going to matter–for customers–when it comes to fuel
consumption, load capacity, driver appeal, etc. This tool is a prototype
which has a potential to be used within the Volvo sales departments.

7.2 Publications

The ARISE project has led to the following publications and master thesis
that corroborate the objectives defined in Section 5.
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• Published:

– Parivash Pirasteh, S lawomir Nowaczyk, Sepideh Pashami, Magnus
Löwenadler, Klas Thunberg, Henrik Ydreskog, and Peter Berck
”Interactive feature extraction for diagnostic trouble codes in pre-
dictive maintenance”, Proceedings of the Workshop on Interactive
Data Mining (WIDM 19).

– S lawomir Nowaczyk, Anita Sant’Anna, Ece Calikus, Yuantao Fan
”Monitoring equipment operation through model and event dis-
covery”, Intelligent Data Engineering and Automated Learning
IDEAL 2018, 19th International Conference, Madrid, Spain, Novem-
ber 2123, 2018.

– Mohamed-Rafik Bouguelia, S lawomir Nowaczyk, Amir H. Pay-
berah ”An adaptive algorithm for anomaly and novelty detection
in evolving data streams”, 2018. Data mining and knowledge dis-
covery. 32(6), pp. 1597-1633

– Thorsteinn Rögnvaldsson, S lawomir Nowaczyk, Stefan Byttner,
Rune Prytz and Magnus Svensson ”Self-monitoring for mainten-
ance of vehicle fleets”, 2018. Data mining and knowledge discov-
ery. 32(2), pp. 344-384

– Sepideh Pashami, Anders Holst, Juhee Bae, S lawomir Nowaczyk,
”Causal discovery using clusters from observational data”, FAIM’18
Workshop on CausalML, Stockholm, Sweden, July 15, 2018.

– Evaldas Vaiciukynas, Matej Ulicny, Sepideh Pashami, S lawomir
Nowaczyk ”Learning Low-Dimensional Representation of Bivari-
ate Histogram Data”, 2018. IEEE transactions on intelligent
transportation systems. 19(11), pp. 3723-3735

• Accepted:

– Reza Khoshkangini, Sepideh Pashami and S lawomir Nowaczyk,
”Warranty Claim Rate Prediction using Logged Vehicle Data”,
19th Portuguese Conference on Artificial Intelligence, EPIA 2019,
Proceedings, Springer.
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– Reza Khoshkangini, Sepideh Pashami, Peter Berck and S lawomir
Nowaczyk, ”Prediction of Field Reliability Deviation from Logged
Vehicle Data”, 19th IEEE International Conference on Data Min-
ing (ICDM19).

• In progress:

– Reza Khoshkangini, Peyman Mashadi, Peter Berck, Saeed Gholami
Shahbandi, Sepideh Pashami, S lawomir Nowaczyk, Tobias Nick-
lasson, ”Multiple Machine Learning Approaches for Claim Rate
Forecasting”, to be submitted

– Fredrik Johansson, Oskar Dahl, Reza Khoshkangini, Sepideh Pashami
and S lawomir Nowaczyk, ”Understanding Association Between
LVD and Vehicle Configuration Parameters – Using Clustering
and Rule-Based Machine Learning”, to be submitted.

• Master Thesis

– Fredrik Johansson and Oskar Dahl, Understanding usage of Volvo
trucks”, MSc Thesis, defended June 2018.
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8 Conclusion and future research

A practical way to avoid quality issues in vehicles is to predict the possibility
of such issues ahead of time. ARISE provided various machine learning
approaches suited for the early detection of quality issues by utilising and
integrating multiple data sources.
In this project, we have shown how multi-structural approaches can be used
for the early detection of component failures, by exploiting data resources
such as claim data, LVD and the integration of them. These result in effective
and reliable pipelines to support the predictive maintenance strategy to plan
before quality issues happen. This is beneficial for both manufacturer and
customer in terms of cost and safety, respectively.
Software was developed to facilitate the exploration of the quality journals
and warranty claims. In this system the data could be updated periodically to
provide the current status of customer and warranty operations. Knowledge
about quality journal length and effectiveness can be used to monitor on-
going journals and flag possible issues with open journals. These issues could
for example be related to the time the journal has been open.
With respect to the claim rate predictions, we envisaged (a) integration with
the aforementioned software, and (b) the construction of an early warn-
ing system for unexpected claim rates. Integration with the software could
provide an exploration and dashboard system, where historic and current
claim rate information is available, augmented with a warning system flag-
ging claim rates which rise faster than expected.
Prediction on individual chassis could be used to schedule the affected vehicles
for extra inspection. By identifying potential problems in time, better up-
time for the customer can be provided.
Volvo is collecting large amounts of data for the purpose of a better under-
standing of how their products are used, to improve their products and e.g.
design more optimised maintenance programs. We are planning to continue
the ongoing collaboration with the Knowledge Foundation (KKS) profile+
project called CAISR+ by focusing on predictive maintenance with data and
machine learning techniques. Since in ARISE, we have reached the high
technology readiness levels (TRLs), we would like to focus on the industrial
impact of the research in the next project.
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9 Participating parties and contact person

For more information, please contact:
Claes Pihl, Claes.Pihl@volvo.com

S lawomir Nowaczyk, Slawomir.Nowaczyk@hh.se
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