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Abstract

For fatigue design of vehicles, the external loads need to be assessed. One
source of variation in the loads is the driver’s behaviour. This behaviour can
be characterized as driving events. In this study we use hidden Markov models
(HMMs) for identifying the driving events. The idea is that one can see the
driving events as hidden states and construct the Markov model based on
them. The steering events such as curves and maneuvers are detected using
on-board logging signals available on trucks. We test our proposed method for
both discrete and continuous observation processes. The EM algorithm has
been used for estimating the HMM parameters. Also a recursive EM algorithm
has been proposed for on-line estimation. A fatigue damage index is computed
by using the extreme forces occurring during those steering events. An explicit
formula for the expected damage is found using vehicle independent driving
events for steering components.

Keywords: Hidden Markov models (HMMs), online EM algorithm, fatigue
damage, vehicle independent load models, steering events, on-board logging
signals, lateral loads.
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1. Introduction 1

1 Introduction

From an industrial point of view, reliability means that the products comply
to customer demands. Companies want to design a vehicle based on customer
usage. By enabling the optimization of vehicles with regard to the use, the
companies obtain benefits such as increased capacity, reduced fuel consumption,
reduced material consumption in production and reduced road wear. All these
points can be summarized as reducing environmental impact. Knowing the
customer driving habits – like the average number of left and right turns – is
very important in vehicle design. These behaviors together with the expected
damage caused by an event can be used to design a robust component.

A driver can affect the load by changing the speed, braking or adapting to
the curves. These behaviors are characterized as driving events. In general,
the customer behavior is unknown and needs to be estimated. To identify the
events we need to use the information available for all vehicles by means of CAN
(Controller Area Network) bus data. Since the driving events are not recorded
in CAN data, we develop a method for identifying the driving events, their
frequency for different uses of the vehicle. In addition, finding the distribution
of severity within each event is of interest. For example, for curves the damage
can be calculated by finding the distribution of maximum forces for each event.

There are different methods for modeling driver actions and identifying driving
events. For instance, Nilsson et al. (2014) have developed an on-line cycle
detection algorithm to identify driving events during vehicle operation, by using
only production sensors. Karlsson (2007) has described customer usage by
classifying the type of roads. This is important since different aspects of the
customer usage are relevant in order to determine the fatigue damage in service.
Such aspects are the type of roads, transport mission, driver’s behavior and
different kind of maneuvers they perform.

In this thesis, a method is presented to detect the driving events using Hidden
Markov Models (HMMs), see e.g. Rabiner (1989) and Cappé et al. (2005) for a
general description of HMMs. The HMMs are the reliable and robust methods
for event recognition. The idea of using HMMs to identify driving events is not
new and it has been used in many applications, see for example Mitrović (2004,
2005) and Berndt and Dietmayer (2009). They constructed one HMM for each
type of driving event such as left and right curves, left, right and straight on
roundabout. In our study, we have used a single HMM for describing all driving
events.

We detect the steering events using an HMM, where the hidden process is the
driving states and the observations are derived from CAN signals. We test our
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proposed method for both discrete and continuous observation processes with
univariate and multivariate distributions. In the continuous version, the gener-
alized Laplace model (GAL) is proposed as the distribution of the observation
sequence in the HMM. Laplace models have previously been used to describe
road roughness and responses measured on driving vehicles, see Kvanström
et al. (2013) and Bogsjö et al. (2012).

We use two types of parameter estimation methods for HMMs, which are off-
line and on-line EM algorithms. The on-line algorithm gives us the opportunity
to track the driver’s actions over time. We use an on-line EM-algorithm for
parameter estimation, which is a modification of the usual EM algorithm. In
order to achieve this goal, a recursive implementation of the EM algorithm will
be used to construct a method which never stops the adaptation.

In our study, we are interested in the number of occurrences of steering events
for a costumer. Together with the forces generated by the events, one can
calculate the expected damage of a component for a specific vehicle. We in-
vestigate the damage caused by driving events and we compute the expected
damage using the on-line estimation of the transition matrix.

Vehicle independent load description is presented in Section 2. In Section 3, we
describe the concept of HMMs. Damage definition and the proposed model to
calculate the expected damage are described in Section 4. Summary of papers
are given in Section 5. Conclusions are presented in Section 6.

2 Vehicle independent driving events

For vehicle companies, it is important to characterize the usage of the trucks
independent of the vehicle. To have components that are strong enough, they
need to describe the load environments. The loads will be different for different
usage of trucks and for different driver’s behavior. Measuring the load on
each truck is expensive. However, the companies want to measure and identify
activities of the driver and specify the relevant events occurring on the road. By
counting the number of driving events, they can estimate the fatigue damage
caused by the same kind of events.

Due to the lack of storage capability, gathering and storing all information
about the customers and measurement signals is not possible. Finding the
vehicle independent part of the load, e.g. frequencies of driving events, is an
important part of the description of vehicle independent service loadings. In
this study we are interested in vehicle independent driving events such as curves
and maneuvers which are relevant for steering components. These kinds of
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events are called steering events and generate high forces in the steering arms.

2.1 Vehicle logging data

In this study a method will be proposed for detection of steering events such
as curves and maneuvering using on-board logging signals available on trucks.
This information is available for all vehicles and can be obtained from CAN
(Controller Area Network) bus data. Since the driving events are not recorded
in CAN-data, one needs to estimate them. If we define the events by using the
information from CAN-data, we can detect the number of events that occur in
customer vehicles.

There are more than 80 signals from CAN bus data that can be used to identify
the driving events. The signals we have used from CAN-data are:

• Steering wheel angles,

• Vehicle speed,

• Yaw rate.

The steering wheel is the wheel we hold in our hands while we drive and the
angle is defined as the angle deviation from driving straight ahead.

The yaw rate contains information about steering events only for a non-zero
speed. By steering, the entire vehicle will shift direction and this will happen
at a certain angular velocity, which is the yaw rate.

We have used the yaw rate and speed to get an accurate lateral acceleration
signal which is computed by the following formula:

”lateral acceleration” = ”speed” · ”yaw rate”.

The lateral force is proportional to the lateral acceleration in turning events.
For most components these loads are not as damaging as the vertical loads,
but they have a large impact on steering components Karlsson (2007).

2.2 Steering events

In this study we are interested in steering events that are relevant for steering
components. We divide the steering events into curves and maneuvers:
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• The curve events give rise to lateral forces through lateral acceleration
and occur when the vehicle drives at a speed higher than about 10 km/h.
We limit the analysis to three cases: right turn, left turn and straight
forward for turns.

• The maneuvering events generate high forces due to steering at low speed,
typically lower than 10 km/h, e.g. driving in or out of a parking lot,
standing still but turning steering wheel. Three maneuvering events are
considered: steering right, steering left and straight forward for maneu-
vers.

3 Hidden Markov models

Hidden Markov models are statistical models often used in signal processing,
such as speech recognition and modeling the financial time series, see for in-
stance Cappé et al. (2005) and Frühwirth-Schnatter (2006). An HMM is a
bivariate Markov process {Zt, Yt}∞t=0 where the underlying process Zt is an un-
observable Markov chain and is observed only through the Yt. The observation
sequence Yt given Zt is a sequence of independent random variables and the
conditional distribution of Yt depends only on Zt.

The main parameters in an HMM are the transition matrix, the emission dis-
tribution, and the initial state distribution. All parameters must be estimated
to characterize the model.

Definition 1. (Transition matrix) Let Zt takes values on a discrete space
{1, 2, . . . , N}. The transition probabilities between the hidden states are de-
fined by transition matrix Q = (q(i, j)), where:

q(i, j) = P (Zt+1 = j|Zt = i), i, j = 1, 2, ..., N. (1)

is the probability of transition from state i to state j and
∑N
j=1 q(i, j) = 1.

Definition 2. (Emission distribution) The emission distribution is the con-
ditional distribution of observations Yt given states Zt. The observed variable
Yt can be a discrete, continuous, univariate or multivariate variable. For a dis-
crete Yt, the emission distribution is a probability distribution of observation
symbols, while for a continuous Yt it can be described by the parameters of the
conditional distribution of Yt given Zt.

Definition 3. (Initial state probabilities) In an HMM, the state where the
hidden process will start is modeled by the initial state probabilities π = (πi),
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where πi is:

πi = P (Z0 = i), i = 1, 2, ..., N (2)

with
∑N
i=1 πi = 1.

3.1 HMMs for steering events

The principle aim of this study is to estimate the number of steering events,
such as curves and maneuvers, occurring on the road. We propose using HMMs
to detect steering events by using on-board logging signals available on trucks,
such as lateral acceleration, vehicle speed and steering wheel angle.

Suppose that there are three driving states right turn (1 = ”RT”), straight
forward (2 = ”SF”) and left turn (3 = ”LT”). The idea is to construct an
HMM based on these three states and to identify the activities of the driver
and specify the relevant events. Figures 1 and 2 illustrate three hidden states
{RT, SF, LT} and the transitions between them with the emission distribution
of the observations.

3.1.1 Discrete model

In a discrete model, the observation process is discretized by using thresholds.
Let the sequence of observation have the possible values V = {V1, V2, ..., VM}.
The probability distribution of observation symbols in each state is usually
presented by the emission matrix, B = {bj(Vk)}, where

bj(Vk) = P (Yt = Vk|Zt = j), k = 1, 2, ...,M, j = 1, 2, ..., N

and
∑M
k=1 bj(Vk) = 1. Figure 1 illustrates an HMM with three hidden states

{RT, SF, LT} which can emit three discrete symbols V = {A, B, C}. For
instance, the lateral acceleration signal which is used to detect the curves, can
be translated into predefined classes V = {A, B, C}, as follows:

• A =
{

”lateral acceleration” < −0.2 m/s2},
• B =

{
−0.2 m/s2 ≤ ”lateral acceleration” ≤ 0.2 m/s2},

• C =
{

”lateral acceleration” > 0.2 m/s2}.
where the threshold 0.2 m/s2 has been chosen based on experience. This kind
of clustering will create a sequence of observation symbols which will be the
observation sequence {Yt}∞t=0 .
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1 = ”RT”

q(1,1)

2 = ”SF”

q(1,2)

q(2,1)

q(2,2)

3 = ”LT”

q(1,3)

q(2,3)

q(3,2)

q(3,3)

yt ∈ {A, B, C}

b1(yt)

yt ∈ {A, B, C}

b2(yt)

yt ∈ {A, B, C}

b3(yt)

Figure 1: An HMM with three hidden states {RT, SF, LT} which can emit
three discrete symbols V={A, B, C} at time t. The parameter q(i, j) is the
conditional probability of transition from state i to state j, and bj(yt) is the
emission probability of symbol yt given state j.

3.1.2 Continuous model

In a continuous version of HMMs, the actual observation sequence {Yt}∞t=0 will
be used. The continuous model has two main advantages over the discrete ver-
sion. Firstly, in the discrete model one has to manually set the threshold levels,
whereas the continuous model is entirely estimated from the actual data. Sec-
ondly, the continuous model can easily be extended to incorporate multivariate
sources of information, which is not easy in the discrete threshold approach.

The conditional distribution of Yt given Zt is denoted by:

gθ(i, yt) = fYt(yt|Zt = i;θ), i = 1, 2, ..., N, yt ∈ R, (3)

where θ represents the parameter vector of distribution, and yt is the observed
value of Yt. Figure 2 illustrates the construction of an HMM with three hidden
states {RT, SF, LT} where the actual lateral acceleration signal has been used
as observation Yt. In our case, the Laplace distribution is used to model the
observations in each state. The generalized asymmetric Laplace distribution
(GAL) is defined in Section 3.2.
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Left turn

Figure 2: An HMM with three hidden states {RT, SF, LT} which the obser-
vation has Laplace distribution in each state. The parameter q(i, j) is the
conditional probability of transition from state i to state j, and gθ(i, yt) is the
conditional distribution of Yt given state i.

3.1.3 A combination of continuous and discrete distributions

As mentioned above, the observations can be multivariate random variables.
The aim is to estimate the model parameters which maximize the likelihood
function. In order to do this, we need to find the conditional distribution of
Yt given Zt. Suppose that the observation Yt = (Yt,1, ..., Yt,d) is a multivari-
ate time series with d = d1 + d2 dimensions. The first d1 random variables
(Yt,1, ..., Yt,d1) are continuous with their observed values (yt,1, ..., yt,d1), and
have the joint probability density function fYt,1,...,Yt,d1

(yt,1, ..., yt,d1 |Zt = i;θ1).
We assume that the last d2 observations (Yt,d1+1, ..., Yt,d2) are discrete variables
and have the joint probability mass function P (Yt,d1+1 = yt,d1+1, ..., Yt,d2 =
yt,d2 |Zt = i;θ2). For the sake of simplicity we assume that the continuous and
discrete variables are conditionally independent given the hidden state. Then,
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the likelihood function of Yt given Zt for a set of parameters θ = (θ1,θ2) is as
follows:

gθ(i,yt) = fYt,1,...,Yt,d1
(yt,1, ..., yt,d1 |Zt = i;θ1)

P (Yt,d1+1 = yt,d1+1, ..., Yt,d2 = yt,d2 |Zt = i;θ2), (4)

where yt = (yt,1, ..., yt,d) is the observed value of Yt and i = 1, 2, ..., N .

Note that any continuous or discrete distributions can be used in Eq. (4). In
our study, different on-board logging signals can be used as observations Yt
and some of them are discretized into the predefined levels. In papers I, II and
III, we separate the curve and maneuvering events and construct two different
models, HMMC for the curves and HMMM for the maneuvers. Another ap-
proach can be to combine the two models into a larger HMM containing both
curve and maneuvering events. In paper IV, we investigate the usefulness of
HMMs with multidimensional observations, for detection of all simultaneously
steering events.

To identify all steering events, we use a single HMM with a combination of
continuous and discrete distributions for observations. We consider six states
as follows: right turn (1 = ”RT”), straight forward for turns (2 = ”SFT”)
and left turn (3 = ”LT”), steering right (4 = ”SR”), straight forward for
maneuvers (5 = ”SFM”) and steering left (6 = ”SL”). We use three signals:
lateral acceleration (Yt,1), steering angle speed (Yt,2) and vehicle speed (Yt,3).
We assume that Yt,1 and Yt,2 are independent random variables with Laplace
distribution and we discretize Yt,3 into the three levels:

• 1 = {0 km/h ≤ ”speed” < 1 km/h},

• 2 = {1 km/h ≤ ”speed” < 10 km/h},

• 3 = {”speed” ≥ 10 km/h}.

We use a combination of Laplace and discrete distributions for observations
and construct the HMM. Figure 3 shows an example of the measured lateral
acceleration, steering angle speed and speed signals with the corresponding
detected hidden states process. The signals are dedicated field measurements
from a Volvo Truck. The sequence of hidden states are reconstructed using the
Viterbi algorithm proposed by Viterbi (1967).
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Figure 3: Lateral acceleration, steering angle speed and speed signals with the
corresponding steering states detected by HMM.

3.2 The generalized asymmetric Laplace distribution

The generalized asymmetric Laplace distribution (GAL), see Kotz et al. (2001),
is a flexible distribution with four parameters: δ, location vector, µ, shift
vector, ν > 0, shape parameter, and Σ, scaling matrix, and denoted by
GAL(δ,µ, ν,Σ). The probability density function (pdf) of a GAL(δ,µ, ν,Σ)
distribution is:

g(y) = 1
Γ(1/ν)

√
2π

(√
(y − δ)TΣ−1(y − δ)

c2

) 1/ν−d/2
2

e(y−δ)Σ−1µ

K1/ν−d/2

(
c2

√
(y − δ)TΣ−1(y − δ)

)
,

where d is the dimension of Y , c2 =
√

2 + µTΣ−1µ and K1/ν−d/2(.) is the
modified Bessel function of the second kind. The normal mean variance mixture
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representation can give an intuitive feel of the distribution. This is a random
variable Y having GAL distribution, and the following equality holds:

Y
d= δ + Γµ+

√
ΓΣ1/2Z,

where Γ is a Gamma distributed random variable with shape 1/ν and scale
one, and Z is a vector of d independent standard normal random variable. For
more details see Barndorff-Nielsen et al. (1982).

In this study, Laplace distribution has been fitted to lateral acceleration (Y1)
and steering angle speed (Y2). There are two choices for modeling the observa-
tions Y = (Y1, Y2) with Laplace distribution. We can either consider that Y1
and Y2 are dependent, which means that they have the same shape parameter
ν, or we can assume that they are independent but with different ν. Both cases
have been tested. It has been found that having separate ν for Y1 and Y2 gives
better fit to data and also better estimation of the transition matrix.

3.3 Estimation of HMM parameters

As was mentioned previously, Θ = (Q,θ) denotes the set of HMM parameters,
where Q = (q(i, j)) is the transition matrix of Markov chain Zt, and θ denotes
the parameters of the conditional distribution of Yt given Zt. We mainly fo-
cus on estimating the transition matrix Q of HMM based on the observation
sequences. The parameter θ is estimated through a maximum likelihood es-
timation on a training set. This is because the conditional distribution of Yt
given Zt in our case study represents the vehicle specific data which can be
estimated under well-defined conditions on the proving ground. However, the
differences between types of roads can affect the transition probabilities and a
transition matrix describes the duration of the events. Therefore, it could be
relevant to update the transition matrix for a new signal to find the hidden
states.

We use the EM algorithm for parameters estimation. The EM algorithm is a
common method for estimating the parameters in HMMs. It is an optimiza-
tion algorithm used to find the parameters that maximize the likelihood. The
algorithm is both robust and often easy to implement.

We apply two types of EM algorithms: off-line and on-line estimations. In the
off-line algorithm, all observations Yt will be used to estimate the transition
matrix, while in the on-line version the parameters are updated recursively each
time a new observation is made. A forgetting factor will be used in the on-line
algorithm which represents the influence of the past data. Figure 4 illustrates
both off-line and on-line procedures to estimate the transition matrix.
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Figure 4: Off-line vs on-line estimation.

3.3.1 EM algorithm

We want to estimate the model parameters which maximize the likelihood func-
tion. The expectation-maximization (EM) algorithm introduced by Dempster
et al. (1977) is an iterative algorithm that maximizes the likelihood starting
from an initial guess. The EM algorithm can be used to estimate the HMM
parameters. In an HMM, we have two processes Zt and Yt, where Zt is not
possible to measure. Here, the sequence of hidden states Zt takes values on
a discrete space {1, 2, . . . , N}. We assume that y0, ..., yT are observed, and
z0, ..., zT are referred as hidden data. Therefore, the complete data likelihood
is given by:

p(y0, ..., yT , z0, ..., zT ; Θ) = πz0gθ(z0, y0)q(z0, z1)gθ(z1, y1)...q(zT−1, zT )gθ(zT , yT ).
(5)

However, the likelihood available for estimating parameters is the joint proba-
bility density function of Y0, ..., YT , calculated by:

L(Θ) = p(y0, ..., yT ; Θ) =
N∑

z0=1
...

N∑
zT=1

p(y0, ..., yT , z0, ..., zT ; Θ). (6)

Computing the sums in the likelihood function L(Θ) is not numerically feasible.
Thus, direct maximization of the likelihood is not computationally tractable.
The EM algorithm provides a method for estimating the HMM parameters
by using the expected value of the complete data log-likelihood given known
observations and current parameters. The algorithm starts with an initial guess
of the parameters Θ(0), and then iteratively updates the current parameters by
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maximizing:

τ(Θ,Θ(n)) = E
[
log p(Y0, ..., YT , Z0, ..., ZT ; Θ)

∣∣y0, ..., yT ; Θ(n)
]

= E
[
log πz0

∣∣y0, ..., yT ; Θ(n)
]

+
T−1∑
l=0

E
[
log q(zl, zl+1)

∣∣y0, ..., yT ; Θ(n)
]

+
T∑
l=0

E
[
log gθ(zl, yl)

∣∣y0, ..., yT ; Θ(n)
]
,

for n = 0, 1, 2, ... until convergence. Thus, the nth iteration of the EM algorithm
consists of the following two steps:

• The E-step, where the expected complete log-likelihood τ
(
Θ,Θ(n)) is

computed,

• The M-step, where the maximum likelihood estimate of the parameter
Θ(n+1) = argmaxΘ τ

(
Θ,Θ(n)) is computed.

For our specific model, the parameter of interest is Q = (q(i, j)). In this case,
the E-step consists of computing P (Zt−1 = i, Zt = j|y0, ..., yT ;Q(n)), which is
the conditional probability of being at state i at time t− 1 and state j at time
t when the observation sequence and the parameters are given. Further, the
M-step uses the conditional probability to compute the transition probabilities
as follows:

q(n+1)(i, j) = ”Expected number of transitions from state i to j”
”Expected number of visits to state i”

=
∑T−1
l=0 P (Zl = i, Zl+1 = j|y0, ..., yt;Q(n))∑T

l=0 P (Zl = i|y0, ..., yt;Q(n))
.

3.3.2 EM algorithm for exponential family

Here, we describe the EM algorithm for exponential family following Cappé
et al. (2005). Suppose that the distribution of complete-data (Zt, Yt) given
Zt−1, p(zt, yt|zt−1), belongs to an exponential family, then

p(zt, yt|zt−1) = h(zt, yt)exp (〈ψ(Θ), s(zt−1, zt, yt)〉 −A(Θ)) ,

where 〈·, ·〉 denotes the scalar product, s(Zt−1, Zt, Yt) is the complete-data
sufficient statistic, and ψ(Θ) and A(Θ) are known functions of parameter. As
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a property of the exponential family, if the maximum likelihood estimate of
parameter Θ exists, it will be a function of the sufficient statistics. In the case
that the parameter of interest is q(i, j), the sufficient statistics will be I(Zt−1 =
i, Zt = j) where I(·, ·) is the indicator function. Assume that St(i, j) denotes
the conditional expectation of the sufficient statistics given the observation
sequence y0, ..., yt and Θ. Then, the nth iteration consists of the following two
steps:

• The E-step, where the expected number of transitions from state i to
state j given y0, ..., yt and Θ(n), is computed,

S
(n+1)
t (i, j) = 1

t
E

[
t∑
l=1

I(Zl−1 = i, Zl = j)
∣∣∣∣y0, ..., yt; Θ(n)

]
, (7)

• The M-step, where the new parameter value Q(n+1) is calculated using
S

(n+1)
t and which can be formulated as Q(n+1) = f(S(n+1)

t ) and is given
by:

q(n+1)(i, j) = S
(n+1)
t (i, j)∑N

j=1 S
(n+1)
t (i, j)

. (8)

3.3.3 On-line EM algorithm

An advantage of the on-line algorithm, compared to the usual EM algorithm, is
that the parameters are updated each time a new observation is made without
the need to store the previous observations.

The on-line EM-algorithm is a modification of the EM algorithm. In order to
achieve this goal, a recursive implementation of the EM algorithm will be used,
see Zeitouni and Dembo (1988). The conditional expectation of the complete-
data sufficient statistics, St(i, j), can be computed recursively. To see this,
define:

φt(k) = P (Zt = k|y0, ..., yt; Θ), (9)

ρt(i, j, k) = 1
t
E

[
t∑
l=1

I(Zl−1 = i, Zl = j)
∣∣∣∣y0, ..., yt, Zt = k; Θ

]
, (10)

for t = 0, 1, . . .. It is clear that St(i, j) =
∑N
k=1 φt(k)ρt(i, j, k).

We want to estimate the transition matrix Q given some observations y0, ..., yt.
In nth iteration of EM algorithm, all elements in φ1, φ2, ..., φt and ρ1, ρ2, ..., ρt
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depend on Q(n). Thus, for updating Q in (n+1)th iteration, all elements of the
two quantities φt and ρt need to be recalculated. Therefore, one needs to store
the entire observation vector to use the EM algorithm. The on-line EM algo-
rithm remedies the issue of requiring the entire observation vector by using Q̂t

rather than Q(t). This is because one can not compute more than one iteration
at each time point t for the on-line EM. As a new observation is made at time
t, we update Q̂t according to Eq. (8) where Ŝt(i, j) =

∑N
k=1 φ̂t(k)ρ̂t(i, j, k) and

both φ̂t and ρ̂t are updated recursively according to the Eqs. (9, 10).

To compute the auxiliary function ρ̂t, we use a fixed forgetting factor γ in the
on-line EM algorithm. The forgetting factor specifies how quickly the algorithm
forgets past information. It is needed for changing frequency of driving events
over time, since for example the frequency of driving events is not the same on
a highway or in a city. Cappé (2011) proposes a diminishing forgetting factor
to ensure that the EM algorithm converges to a stationary point. However,
this is not the goal here and we do not want the algorithm to converge to a
stationary point but rather never stop adapting.

Usually, the driving conditions can change over time and a single trip may
contain different road types such as city and highway. Therefore, using an on-
line algorithm that adapts to a changing environment is of interest. Figure 5
shows the estimated diagonal elements of the transition matrix of driving states
{RT, SF, LT} for one simulated signal. The simulated signal represents a jour-
ney on a city road, highway and then back to a city road and again highway
over 105 seconds (≈ 28 hours), where the sampling period is 1/2 seconds. The
straight thick black lines show the diagonal elements of true transition matrices
which are used for simulating city and highway roads.
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Figure 5: Diagonal elements of on-line estimated transition matrix, simulated
signal from City road+Highway+City road+Highway, with four different values
of forgetting factor γ. Straight thick black lines show the diagonal elements of
true transition matrices Qcity and Qhighway.

It can be seen that the on-line algorithm with variable forgetting factor γ can
not follow the changes of the parameters well and that the adaption dimin-
ishes over time, as is to be expected. The fixed forgetting factor, however,
seems to adapt well to the chaining environment. If a vehicle should change
the environment (city/highway) more frequently, higher values of γ would be
chosen.

3.4 Estimating the number of events

Driver behaviors cause variations in the load by changing the speed, braking,
and adapting to curves. The aim of this work is to develop a method for iden-
tifying the steering events and their frequency. We are mainly interested in
the number of occurrences of driving events for a costumer. Together with the
forces generated by the events, one can calculate the expected damage of a
component for a specific vehicle. Since the steering events are not recorded in
CAN data, we estimate them using a hidden Markov model (HMM), where the
hidden processes represent the driving states and the observations are derived
from the CAN signals.
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In papers I and II, the Viterbi algorithm was used to detect the steering events.
However, the Viterbi algorithm requires access to the entire data sequences
and thus can not be used for on-line estimation when the data is not stored.
Instead we compute the expected number of events using the on-line estimated
transition matrix.

3.4.1 Detecting the driving events

The Viterbi algorithm, see Viterbi (1967), is an important algorithm in HMMs
and is used to find the most probable sequence of hidden states for a new
signal. Suppose that we have an observation sequence y0, y2, ..., yT . We would
like to find driving events for this new observation. It means that we should
find a sequence of hidden states which maximizes the probability of observing
this specified observation. The Viterbi algorithm determines the most likely
sequence ẑ0, ..., ẑT of hidden (driving) states, which maximizes the conditional
probability of the observation sequence for given parameters Θ:

(ẑ0, ..., ẑT ) = argmaxz0,...,zT p(y0, ..., yT |z0, ..., zT ; Θ).
By using the Viterbi algorithm, we reconstruct the sequence of driving states
and count the number of events. Figure 6 shows a lateral acceleration signal
and the corresponding reconstructed hidden states process using the Viterbi
algorithm.
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Figure 6: Lateral acceleration signal and the corresponding reconstructed hid-
den states.
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3.4.2 Calculating the expected number of events

As mentioned above, the Viterbi algorithm requires the entire data sequences
and thus can not be used when one does not store the data. Instead of detecting
the driving events, one can calculate the expected number of events using a
transition matrix of driving states.

Suppose that at each time t, the Markov chain {Zt} has transition matrix Qt.
By solving the equation (Qt− I)πt = 0, one gets the stationary distribution of
Qt. The expected number of ith event for {Zt}Tt=0 is equivalent to the number
of times that transitions j → i for all j 6= i occur. The intensity of visiting
state i is ξi(t) =

∑
j 6=i I(Zt−1 = j, Zt = i), for t = 1, ..., T and i, j = 1, 2, ..., N .

In addition, one should consider the state at time zero, Z0, which can also be
i. Therefore, the expected number of ith event up to time T is:

ηi(T ) = E[I(Z0 = i)] + E[
T∑
t=1

ξi(t)] = π0,i +
T∑
t=1

∑
j 6=i

πt,jqt(j, i). (11)

In the off-line model the formula is simplified to:

ηi = πi + T
∑
j 6=i

πjq(j, i).

4 Estimation of fatigue damage

Fatigue is a process of material deterioration caused by variable stresses. For
a vehicle, stresses depend on environmental loads, e.g. road roughness, vehi-
cle usage and driver’s behavior. Time to failure of a component is a random
variable that depends on many factors such as stress variability, material prop-
erties and the shape of components. Often, the so-called rainflow damage is
evaluated to describe the severity of the load environments. The damage is a
nondecreasing random process. In practice, the expected damage is an impor-
tant parameter which is used to estimate the risks of fatigue failures. In this
section we give a short introduction to the rainflow method and introduce some
concepts needed to compute the expected damage for a random load.

4.1 Rainflow cycles and expected damage

The rainflow cycle count algorithm is one of the most commonly used methods
to compute fatigue damage. The method was first proposed by Endo, see Mat-
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suishi and Endo (1968). Here, we use the definition given by Rychlik (1987)
which is more suitable for a statistical analysis of damage. The rainflow cycles
are defined as follows.

Assume that a load LT , the processes up to time T , has N local maxima. Let
Mi denote the height of the ith local maximum. Denote by m+

i (m−i ) the min-
imum value in forward (backward) direction from the location of Mi until LT
crosses level Mi again. The rainflow minimum, mrfc

i , is the maximum value
of m+

i and m−i . The pair (mrfc
i ,Mi) is the ith rainflow pair with the rainflow

range hi(LT ) = Mi −mrfc
i . Figure 7 illustrates the definition of the rainflow

cycles.

max

min rfc

h

Figure 7: The rainflow cycle.

By using the rainflow cycles found in LT , the fatigue damage can be defined
by means of Palmgren-Miner (PM) rule, see Palmgren (1924), Miner (1945),

Dβ(LT ) = α

N∑
i=1

hi(LT )β , (12)

where α, β are material dependent constants. The parameter α−1 is equal
to the predicted number of cycles with range one leading to fatigue failure
(throughout the article it is assumed that α equals one). Various choices of
the damage exponent β can be considered, like β = 3, which is the standard
value for the crack growth process or β = 5 which is often used when a fatigue
process is dominated by the crack initiation phase.

The rainflow damage, given in Eq. (12), can also be computed using the number
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of interval up-crossings Nosc(u, v), viz.

Dβ(LT ) = β(β − 1)
∫ +∞

−∞

∫ v

−∞
(v − u)β−2Nosc(u, v) du dv, (13)

as was proved in Rychlik (1993). Note the formula is only valid for β > 2.

If LT is a random process, one uses the expected damage as a tool to describe
damage. The damage intensity of a processes is defined as:

dβ = lim
T→∞

1
T
E[Dβ(LT )]. (14)

Finally, using Eq. (13), we get that

dβ = β(β − 1)
∫ +∞

−∞

∫ v

−∞
(v − u)β−2µosc(u, v) du dv, (15)

where
µosc(u, v) = lim

T→∞

E [Nosc(u, v)]
T

. (16)

which is called the intensity of interval up-crossings.

4.2 Reduced load and expected damage

Modelling of the external loads is an important aspect in durability studies of
vehicle components. The approach taken here is to approximate the load by
a vehicle independent sequence of steering events, here representing left and
right turns (LT, RT) or left and right steering (SL, SR). In both cases the
two events are separated by a section when wheels have approximately zero
turning angle, which is called straight forward (SF). Thus, a reduced load can
be defined by keeping the extreme value for each left and right turn and set to
zero in between.

We describe how to construct a reduced load from steering events left and right
turns. However the method could be generalized to other driving events. Let
{Zt}Tt=0 be the hidden processes in an HMM, with three possible driving states
right turn, left turn or straight forward. Assume that we have N turns. We
denote the ith turn by Z∗i , which equals one if the turn is a left turn, and two
if the turn is a right turn. Note that each Z∗i corresponds to a time interval
[ti,start, ti,stop], which represents the start and stop points of ith turn.

Now to create the reduced load, from the sequence of driving events, assume
that Mi and mi are the ith maximum and minimum load during a turn. Then,
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the reduced load {Xi}2Ni=0 is defined as follows

Xi =


0, if i is odd integer,
Mi/2, if Z∗i/2 = 1, i is even integer,
mi/2, if Z∗i/2 = 2, i is even integer.

(17)

Here the zeros are inserted since between each left and right turn event there
must be a straight forward event. Figure 8 illustrates a lateral load and the
corresponding reduced load.
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Figure 8: Reduced load represented by dots where the observed load is repre-
sented by the irregular solid line.

To compute the damage intensity dβ , per driving event, one needs the interval
up-crossing intensity µosc(u, v) of random reduced load. An explicit formula
for µosc(u, v) has been found for a Markov model of the reduced load. We
approximate the process Z∗i by a Markov chain with transition matrix P =
(p(k, j)) (it can be estimated from transition matrix Q in the HMM). Further,
we assume that {Mi}∞i=0 and {mi}∞i=0 are sequences of i.i.d. random variables.
Then, it can be shown that the interval up-crossing intensity µosc(u, v) is:

µosc(u, v) = 1
2


π∗2P (m1 < u), u < v < 0,
π∗2 P (m1 < u) p2(u, v), u ≤ 0 ≤ v,
π∗1P (M1 > v), 0 < u < v.

(18)
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where π∗ = (π∗1 , π∗2) is the stationary distribution of the P and p2(u, v) can be
derived from the equation system:

pj(u, v) = p(j, 1)P (M1 > v) + P (M1 ≤ v) p(j, 1) p1(u, v)
+ P (m1 ≥ u) p(j, 2) p2(u, v), j = 1, 2. (19)

For more details see Maghsood et al. (2015).

4.3 Validation of the model

To validate the proposed load model, we compare the expected damage index
with the damage index estimated from the measured data. The main steps to
calculate the expected damage are as follows:

• Use the HMM to detect the steering events,

• Estimate the transition matrix P ,

• Estimate the distribution of the extreme forces Mi and mi,

• Compute the interval up-crossing intensity µosc(u, v) given by Eq. (18),

• Compute the expected damage by using Eq. (15).

We use the dedicated field measurements from a Volvo Truck as our data
set. Three maneuvering events are considered: steering right, steering left
and straight forward. The link rod force is used as the measured load Lobs for
damage calculation. Based on detected steering events, the reduced load x is
estimated by the sequence of the extreme loads during steering right and steer-
ing left and zeros for driving straight. The Rayleigh distributions are fitted to
the maximum (Mi) and minimum (mi) values.

The measured load and the reduced load with the corresponding detected ma-
neuvering events are shown in Figure 9a. In the figure, the stars are the ex-
treme values of load occurring during maneuvering events and constituting the
reduced load x. Figure 9b demonstrates the rainflow cycles for the measured
link rod force and the reduced load. It can be seen that all large cycles can be
captured by the reduced load.
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Figure 9: (a) Top: solid irregular line is the measured link rod force while
stars represent the reduced load. Bottom: Detected maneuvers. (b) Dots -
the rainflow cycles found in the measured link rod force. Circles - the rainflow
cycles counted in the reduced load.

Table 1 shows a comparison of the damage indexes Dβ(Lobs) computed for the
measured load, Dβ(x) for the reduced load and the expected damage index
E[Dβ(X)] for the random model of the reduced load. The results indicate
that the damage calculated from the sequence of the extreme forces occurring
during events is close to the total damage value. As expected, the damage
indexesDβ(Lobs) andDβ(x) are almost identical. We conclude that the reduced
load models the variability of the measured load well. The expected damage
E[Dβ(X)] is larger than Dβ(x). Whether this difference is significant is shown
in Figure 10.

Table 1: Comparison of damage indexes Dβ(Lobs) computed for the measured
load, Dβ(x) for the reduced load and the expected damage index E[Dβ(X)].

Dβ(Lobs) Dβ(x) E[Dβ(X)]
β = 3 14.8 · 103 14.3 · 103 15.5 · 103

β = 5 2.3 · 106 2.2 · 106 2.7 · 106

In Figure 10a, the load spectra estimated from the measured link rod force and
the reduced load are compared with the theoretical load spectrum. As can be
seen in Figure 10b, where the load spectra for 10 simulated loads are compared
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with the theoretical load spectrum and the load spectrum of the reduced load,
the differences between the measured spectrum and the expected one are small.
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Figure 10: (a) The regular solid line is the theoretical load spectrum. The
stair-like functions are the load spectra found in measured link rod force and
the reduced load. (b) Load spectra for 10 simulated loads compared with the
theoretical load spectrum and the load spectrum of the reduced load (the thick
stair-like line).

4.3.1 Damage investigation based on on-line algorithm

In this section we compute the damage intensity per kilometer based on on-
line estimation of transition matrix . We use one simulated lateral acceleration
signal in order to calculate the damage. The simulated signal represents a
journey during a city road, highway and then back to a city road and again
highway over 105 seconds, where the sampling period is 1/2 seconds. The speed
of the vehicle is considered to be 50 kilometers per hour and the mileage is 1000
km. We split the signal into 1000 equally sized frames. For each frame, the
expected number of turns are computed by ∆ηk = ηk − ηk−1, where ηk is the
estimated number of turns occurring over the first k kilometers. The expected
damage based on turns for each frame is calculated by:

∆dk = ∆ηkdk,

where dk is the expected damage per turn and calculated by means of Eqs. (15)
and (18). The empirical distribution ofMi andmi is used to calculate the inten-
sity of interval crossings µosc(u, v). We use the on-line estimation of transition
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matrix Q with forgetting factor γ = 0.002 to estimate the transition matrix P .
The result for damage exponent β = 3 is shown in Figure 11. The straight thick
red line shows ∆dk(Qtrue), which is the damage intensity computed using the
model transition matrices for city and highway. We can observe the change
in damage between highway and city road. As might be expected the damage
intensities (per km) estimated for the city are higher than for highway, since
the number of turns occurring in a city road is larger than on highways.
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Figure 11: Damage intensity per km according to the on-line estimation of
transition matrix with γ = 0.002. The plot shows the results for damage expo-
nent β = 3. The straight thick red line shows ∆dk(Qtrue), which is the damage
intensity computed using model transition matrices for city and highway.

5 Summary of papers

5.1 Paper I: Detection of Steering Events based on Vehi-
cle Logging Data using Hidden Markov Models

Hidden Markov models (HMMs) have been proposed for detection of steering
events such as curves and maneuvering using on-board logging signals available
on trucks, such as lateral acceleration, vehicle speed and steering wheel angle.
The idea is to consider the current driving event as the hidden state and con-
struct the model based on them. To estimate the parameters of the model, we
have considered two different methods. In method 1, we have estimated the
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transition and emission matrices from the training set, while in method 2 the
emission matrix has been fixed from the training set and the transition matrix
has been re-estimated based on the test set. The differences between roads can
affect transitions between states. The emission matrix describes the property
of the events given certain hidden states, while the transition matrix describes
the sequence and duration of the events. Therefore, it could be relevant to
update the transition matrix for a new signal to find the hidden states.

In order to compare methods 1 and 2, we have calculated both type I (false
positive) and type II (false negative) errors. If we find an event that does
not exist, we get a false positive error. However, if we can not detect the true
event, the false negative error will happen. The simulation study indicates that
method 1 is quite robust to changes in the transition matrix, since it is possible
to detect the events even though the transition matrix in training and test sets
are different. Method 2 can be used when we have a large enough test set to
accurately estimate the transition matrix.

5.2 Paper II: Modeling Extreme Loads Acting on Steer-
ing Components using Driving Events

In this paper the damage index is calculated based on identified driving events
such as curves and maneuvers. The sequence of the most extreme forces oc-
curring during driving events will form the largest cycles and are consequently
the most essential parts of the load. We have modeled the sequence of driving
events with a Markov chain and reduced load by keeping the extreme value for
each left and right turn and zero for the straight forward event. A formula for
the expected damage index is computed using reduced load.

The proposed models were validated using measured data from a Volvo truck.
The results show that all large rainflow cycles found in measured load were
found in the reduced load. Hence, the fatigue damage of steering components
can be predicted by reduced load. The proposed load model accurately de-
scribes the variability of the rainflow ranges for the considered measured load.
Further, using the model the expected damage could be predicted.

5.3 Paper III: Load Description and Damage Evaluation
using Vehicle Independent Driving Events

In this paper, we investigated the main parameters of the load model proposed
in Paper II. The proposed random model depends only on four parameters. A
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sensitivity study was conducted to see how much the expected damage depends
on the variability of parameters of the proposed model.

5.4 Paper IV: Detection of Steering Events using Hidden
Markov Models with Multivariate Observations.

In this paper, we have proposed a method to identify the steering events, such
as curves and maneuvers, using an HMM with multivariate observation se-
quences. We considered six driving states: right turn (RT), straight forward
for turns (SFT), left turn (LT), steering right (SR), straight forward for ma-
neuvers (SFM) and steering left (SL), to construct the HMM. It is shown that
hidden Markov models with a combination of continuous and discrete distribu-
tions for observations can be used to find the steering events. Both simulated
and measured signals are used to identify the steering events and validate the
model.

5.5 Paper V: On-line Estimation of Driving Events and
Fatigue Damage on Vehicles

In this article, we estimated the number of steering events using a hidden
Markov model where the model parameters are estimated by using an on-
line EM algorithm. An advantage, compared to the usual EM algorithm, is
that the parameters are re-estimated each time as a new observation is made
without the need to store the previous observations. The driving conditions
can change over time and a single trip may contain different road types such
as city and highway. Therefore, we propose an algorithm that adapts to a
changing environment. Further, we compute the expected damage caused by
driving events using an on-line algorithm.

By determining the number of events that occur in customer vehicles, it is
possible to estimate the fatigue damage caused by the same kind of events. We
have shown how to compute the expected damage according to the reduced
load using an on-line estimation of transition matrix.

6 Conclusion

It has been found that the HMMs can be used to recognize the steering events
such as curves and maneuvers based on vehicle logging data. We estimate the
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steering events using an HMM, where the hidden process is the driving states
and the observations are CAN signals. We use the EM algorithm to estimate
the HMM parameters. The parameters of the HMM are also estimated using
an on-line EM algorithm. The on-line algorithm is a modification of the EM
algorithm which allows for an adaptive parameter estimation method. By
using an on-line algorithm, the parameters can adapt over chaining driving
environment.

Damage calculation is investigated for steering components. The sequence of
the most extreme forces occurring during driving events will form the largest
cycles and are consequently the most essential part of the load. The sequence of
driving events which is modeled by a Markov chain, forms the vehicle indepen-
dent part of the load. The load is approximated using the vehicle independent
sequence of driving events, here representing left and right turns or left and
right steering. In both cases the two events are separated by a section when
wheels have zero turning angle, which is called Straight forward. Thus, a re-
duced load can be defined by keeping the extreme value for each left and right
turn and zero between each event. An explicit formula is found for the ex-
pected damage according to the reduced load. We conclude that the proposed
random load accurately describes the variability of the rainflow ranges for the
measured loads in question.
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on-board logging signals available on trucks. The method is based on hidden
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SP Technical Research Institute of Sweden, working with statistical methods for
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This paper is a revised and expanded version of a paper entitled ‘Detection of the
curves based on lateral acceleration using hidden Markov models’ presented at
5th Edition of the International Conference on Fatigue Design, Senlis, France,
27–28 November, 2013.

1 Introduction

For fatigue design, the loads need to be assessed. One approach is to describe the load
environment and the customer usage, which together with the vehicle dynamics define
the load conditions, see Edlund and Fryk (2004) for heavy truck applications, Karlsson
(2004, 2007) for curve characteristics, and Johannesson and Speckert (2013) for general
information. The characteristics of driving events used for describing customer usage can
be defined using measurements obtained from specially equipped vehicles on a test track.
On the other hand, customer vehicles in general have no access to measurements dedicated
to durability, and using specially equipped vehicles in service is difficult and expensive.
Thus, for on-board logging of events we need to use the information which is available for
all vehicles by means of controller area network (CAN) bus data.

For a typical heavy truck, there are more than 80 signals from the CAN bus and some
of them, such as steering wheel angles, vehicle speed, yaw rate and lateral acceleration, are
really important to identify the driving events. The steering wheel is the wheel turned by
the driver while driving and the angle is defined as the angle deviation from driving straight
ahead. The yaw rate is the angular velocity. The lateral acceleration is proportional to the
lateral force in turning events. For most components these loads are not as damaging as the
vertical loads, but they have a large impact on steering components (Karlsson, 2007).

A dataset is available from Volvo Trucks, and the important events have been defined
based on dedicated test track measurements. The problem is to identify the events and their
frequencies from CAN data. In this study we propose a method using HMMs to detect
steering events such as curves and manoeuvring based on vehicle logging data. The idea is
to use the driving events, i.e., straight forward and turns, as the hidden states and construct
an HMM based on them.

The HMMs have been widely used in signal processing to recognise the events and also
to predict them in the future, see e.g., the overview by Rabiner (1989) with applications to
speech recognition. Mitrović (2004, 2005) and Berndt and Dietmayer (2009) used HMMs
to detect driving events. They constructed one HMM for each type of driving event such
as left and right curves, left, right and straight on in roundabouts. They created a training
set by identifying events manually to build the models and evaluate them. Then for a new
observation sequence, they computed the observation likelihoods based on all models and
chose the driving event type with respect to the highest likelihoods.

The parameters in an HMM are the transition probability matrix, the emission matrix
and the initial state distribution. They must be estimated to characterise the model. In
our suggested method, we have used a single HMM for describing all events instead of
constructing several different models where each HMM describes a single event. It should
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be easier to estimate the parameters of one model than a large number of parameters of
different models.

In an HMM, a training set is used to estimate the parameters of the model, while a test
set is used to validate the model. A training set consists of all necessary information for
estimating the model parameters. In our study, the training set contains all history about the
steering events such as the start and stop points.

Lateral acceleration signals have been used to detect the curves. We have simulated
different lateral acceleration signals with different lengths and different number of curves
(events) to have some controlled training and test sets. We have also used the same technique
to detect the manoeuvres such as static steering. The measured steering wheel angle signal
has been used instead of lateral acceleration.

In Section 2, we describe the concept of HMMs and present two methods for detection
of curves. For method 1 the parameters of the HMM are estimated from the training set,
while for method 2 the transition matrix is re-estimated based on the test set. Examples with
results for simulated and measured data are shown in Section 3. Conclusions are presented
in Section 4.

2 Hidden Markov models

Hidden Markov models are probabilistic models that can be used for detection of patterns or
events in a signal. The setup is that there are two processes. The interesting processZt, which
describes the events, is not possible to measure. It is thus called hidden and modelled as a
Markov chain. However, what can be observed is a process Yt, whose statistical properties
depend on the value of Zt. The problem at hand is to estimate the parameters of the HMM.
Based on an observation of Yt, it is then possible to reconstruct the most probable hidden
process and identify events.

First, three events, right turn (RT), left turn (LT) and straight forward (SF) have been
considered. The idea is that one can see these three events as three hidden states and
construct the HMM based on them. Figure 1 illustrates three hidden states, the transitions
between them and a sequence of observations that can be generated based on the probability
distribution of observation symbols.

Figure 1 The hidden state sequence is modelled by a Markov chain and the observation sequence
is modelled by the emission probabilities (see online version for colours)
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Let {Zt}∞t=1 be a Markov chain where Zt denotes a hidden state at time t and has possible
values S = {S1, S2, ..., SN}. The transition probabilities between the hidden states are
defined by the matrix A = {aij}, called transition matrix, where

aij = P (Zt+1 = Sj |Zt = Si), i, j = 1, 2, . . . , N

and
∑N

j=1 aij = 1.
Further, there is another process {Yt}∞t=1 where Yt denotes the observation symbol at

time t. The sequence of observation has the possible values V = {V1, V2, . . . , VM} and is
observable. The probability distribution of observation symbols in each state is given by
the emission matrix, B = {bj(Vk)}, where

bj(Vk) = P (Yt = Vk|Zt = Sj), k = 1, 2, . . . ,M

and
∑M

k=1 bj(Vk) = 1.
The state where the hidden process will start is modelled by the initial state probabilities,

which are denoted by π = {π1, π2, . . . , πN} where

πi = P (Z1 = Si), i = 1, 2, . . . , N

and
∑N

i=1 πi = 1.
It has been demonstrated that a discrete HMM can be good in pattern recognition, see

Rabiner (1989). We have also used a discrete HMM λ = (A,B, π), where λ represents
model parameters which contain the transition matrix, the emission matrix and the initial
state distribution.

As mentioned above, we have three hidden states S = {RT, SF, LT} denoting the three
events right turn, straight forward and left turn, respectively. In order to estimate the
parameters of the HMM, we have used the lateral acceleration signal where we also have an
observation of the hidden process Zt. This will be our training data containing observations
of both the Y -process and the hidden Z-process. We have considered lateral acceleration
values as our data and thus we need to translate this continuous feature into predefined
classes. Here, three classes will be used, V = {A, B, C}, which are defined as follows:

• A =
{

“lateral acceleration” < −0.2 m/s2
}

• B =
{
−0.2 m/s2 ≤ “lateral acceleration” ≤ 0.2 m/s2

}
• C =

{
“lateral acceleration” > 0.2 m/s2

}
.

This kind of clustering will create a sequence of observation symbols which has been used
to estimate the emission matrix in our model.

To estimate the transition probabilities, we have just counted the number of transitions
between the three states and normalised each row of the transition matrix to one. To estimate
the emission matrix, we have counted the number of times that each observation symbol
has been seen in each state.
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2.1 Model evaluation

The aim of this study is to find a probabilistic model to recognise the curves. The parameters
of the HMM have been estimated by using a training set and evaluated by using different new
sequences of observations as our test set. To identify the curves for a new lateral acceleration
signal, we have considered two different methods as follows:

• Method 1: Use the estimated transition and emission matrices from the training set to
detect events in the test set.

• Method 2: Use the emission matrix from the training set but re-estimate the transition
matrix based on the test set, and then detect events in the test set.

The main reason for considering method 2 is that differences between types of roads can
affect the transition probabilities between states. The emission matrix describes the property
of the curves given certain hidden states. However, the transition matrix describes the
duration of the events. Thus, it could be reasonable to update the transition matrix for a new
signal to find the hidden states.

2.1.1 Method 1

Here, we have used a training set to estimate the parameters λ = (A,B, π) of the HMM.
The Viterbi algorithm, see Viterbi (1967) and Forney (1973), has then been used to find the
most probable sequence of hidden states for a new signal.

Suppose that we have classified the new lateral acceleration values with length n and
have the observation sequence y1, y2, . . . , yn. We would like to find driving events for this
new observation. It means that we want to find a sequence of hidden states which maximises
the probability of making this specified observation. The Viterbi algorithm finds the state
sequence z1, z2, . . . , zn out of the 3n possible sequences of length n, which maximises:

P (Y1 = y1, . . . , Yn = yn|Z1 = z1, . . . , Zn = zn;λ).

In fact, the Viterbi algorithm gives a state sequence z1, z2, . . . , zn, which maximises the
conditional probability of the observation sequence for given parameters λ = (A,B, π).
The result will give the most likely sequence of hidden states from which it is possible to
identify the driving events.

2.1.2 Method 2

In this approach, we have fixed the emission matrix from the training set and re-estimated
the transition matrix for each new signal. To estimate model parameters based on an
observation sequence when the hidden sequence is unknown, we have used the Baum-
Welch algorithm, which was introduced by Baum et al. (1970). It is a special case of the
expectation-maximisation (EM) algorithm, see Dempster et al. (1977). The Baum-Welch
algorithm is one of the most well-known methods for estimating the model parameters in
HMMs on unlabelled sequences. It is an iterative maximum likelihood method and starts
with initial parameters that in our case are set based on training data. The algorithm uses
a forward-backward procedure to estimate the model parameters for a given sequence of
observations.
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For completeness, we will describe the Baum-Welch algorithm following Rabiner
(1989), and then we will explain how it has been used in method 2.

Consider an observation sequence y1, y2, . . . , yT with lengthT and suppose that we have
N hidden states S = {S1, S2, . . . , SN}. We will estimate parameters λ = (A,B, π). The
algorithm will start by initial parameters λ0 = (A0, B0, π0). It will compute the conditional
probability such that:

ξt(i, j) = P (Zt = Si, Zt+1 = Sj |Y1 = y1, . . . , YT = yT ;λ)

which is the probability of being at state i at time t and state j at time t+ 1 when the
observation sequence and the parameters are given.

To compute the probabilities, the forward-backward factors will be used which are
defined as the following:

αt(i) = P (Y1 = y1, . . . , Yt = yt, Zt = Si;λ)

βt(i) = P (Yt+1 = yt+1, . . . , YT = yT |Zt = Si;λ).

The formulas for forward-backward recursion are:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(yt+1)

βt(i) =

N∑
j=1

aijbj(yt+1)βt+1(j),

where t = 1, 2, . . . , T − 1.
To update the model parameters λ̄ = (Ā, B̄, π̄), two steps will be considered:

• E-step:
In the E-step, we will compute ξt(i, j). Based on the definition of forward-backward
factors, ξt(i, j) can be written as follows:

ξt(i, j) =
αt(i)aijbj(yt+1)βt+1(j)

P (Y1 = y1, . . . , YT = yT ;λ)

=
αt(i)aijbj(yt+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)aijbj(yt+1)βt+1(j)

,

where
∑T

t=1 ξt(i, j) is the expected number of transitions from state i to j. Let’s
define γt(i) = P (Zt = Si|Y1 = y1, . . . , YT = yT ;λ). Then it should be clear that
γt(i) =

∑
j ξt(i, j) and

∑T
t=1 γt(i) is exactly the expected number of transitions

from state i.

• M-step:
In the M-step, the parameters λ = (A,B, π) will be updated. Both forward and
backward variables will be used to re-estimate model parameters by using the
following formulas:
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π̄i = “Expected number of times in state i at time t = 1”
= γ1(i).

āij =
“Expected number of transitions from state i to j”

“Expected number of transitions from state i”

=

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

.

b̄j(Vk) =
“Expected number of times in state j and observing Vk”

“Expected number of transitions in state j”

=

∑T
t=1(observingVk)

γt(j)∑T
t=1 γt(j)

.

By iterating the above procedure, we can improve the probability of a particular
observation sequence being generated by the model with given parameters.

In method 2, we did not update the probabilities bj(Vk) in the Baum-Welch algorithm since
we have fixed the emission matrix B = Btraining. We have just re-estimated the transition
matrix and the initial state distribution for a given observation sequence. Then we have used
the Viterbi algorithm to find the most likely hidden states based on given parameters.

3 Examples

We have tested our models with simulated and measured datasets. In the first example,
we have simulated different lateral acceleration signals as our training and test sets and
evaluated the detection of driving events. In the second example, we have used measured
data, which is dedicated field measurements from a Volvo Truck.

3.1 Simulated lateral acceleration signal

We need a training set to estimate the parameters and a test set to evaluate the model. For
this purpose, we have simulated different lateral acceleration signals with a sampling period
of 0.5 s. Figure 2 shows an example of the simulated lateral acceleration signal and the
corresponding hidden states. These two simulated signals will be our training set. Next, we
will describe how the simulation has been performed.

First we have generated the events by using a Markov chain in our simulation. We
supposed that the probabilities of going from a right turn to a left turn and vice versa are
quite small. Most often we will have straight forward after a right turn or a left turn. Thus,
we have considered a transition matrix for the sequence of events such as


R S L

R 0 1− p p
S 0.5 0 0.5
L p 1− p 0


where p = 0.1 and represents the probability of going from a right turn to a left turn. We
have simulated a Markov chain with three states which represent our sequence of events.
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Figure 2 Simulated lateral acceleration signal and the corresponding hidden states (see online
version for colours)

Since we are going to model the length of each straight and each curve, we have chosen
the start and stop points of each event(i), i = 1, . . . ,K as follows:

“Start point for event(i)” = “Stop point for event (i− 1)”,
“Stop point for event (i)” = “Start point for event(i)” + Li.

where Start point for event(1) = 0. The length (duration) of each event Li is random
according to specified distributions, namely:

• if event(i) is a curve (right or left turn), then Li ∼ U(2, 8) since each turn may take
2–8 s

• if event(i) is straight, then Li ∼ exp(θ), where θ = 20 shows the average duration of
each straight.

The result will be our simulated hidden process Zt. Note that the constructed Zt is not
a Markov chain, since the lengths of the curves are uniformly distributed, which is more
realistic than the exponential case.

To generate a lateral acceleration signal, we have used a model suggested by Karlsson
(2006, 2007). The measured lateral acceleration can be split into two load processes, which
are the centripetal acceleration and a residual.

Let a(t) be the value of the lateral acceleration at time t, atrap(t) the centripetal
acceleration, and ares(t) the residual, which is a combination of different factors such as
driver, road, vehicle and velocity. The model is formulated as:

a(t) = atrap(t) + ares(t),

atrap(t) = v2(t)× C(t),

ares(t) = sign(r(t))× (r(t)2),

where r(t) ∼ Normal(0, 0.5) and C(t) is the curvature. In fact, for any curve j, the
maximum centripetal acceleration is atrap,j = v2j × Cj where vj indicates the constant
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speed over curve j and Cj is the maximum curvature. Further, the curvature is modelled by
introducing the transformation:

YCj = 1/Cj − rturn,

where log YCj ∼ Normal(µ, σ2), and rturn is the turning radius of the vehicle.
By considering suitable values of parameters µ = log(1/100) and σ = 0.5 taken from

Karlsson (2007), we can generate reasonable lateral acceleration signals. To get the Yt

process, we have translated lateral acceleration values into the symbols V = {A, B, C} as
described on page 4.

3.1.1 Estimate of parameters from training set

It should be remembered that in this example the signal in Figure 2 will be our training set.
The signal contains 100 events and we have considered the value θ = 20 to get the duration
of each straight. Figure 2 illustrates 1200 s (2400 samples) of the training set.

Even though the simulated hidden process is not a Markov chain, we will use the HMM
methodology to estimate parameters and to detect events. To estimate the transition matrix,
we have counted the number of transitions between the three states. Finally, we have counted
the number of times that each observation symbol (A, B, C) has been seen in each state to
estimate the emission matrix.

• The transition matrix:


R S L

R 0.910 0.075 0.015
S 0.010 0.979 0.011
L 0.007 0.092 0.901


• The emission matrix:


A B C

R 0.970 0.022 0.008
S 0.185 0.638 0.177
L 0.014 0.034 0.952


3.1.2 Model evaluation

To recognise the curves for a new simulated lateral acceleration signal, we have considered
two different methods. We have generated a new lateral acceleration signal as our test set
to compare the two methods. The new signal is shorter than the training set and we have
considered the value θ = 20. The simulation contains 28 curves.

Method 1

Here, we have estimated both transition and emission matrices from the training set. Then,
the Viterbi algorithm has been used to find the most probable sequence for the new signal.
Figure 3 shows the true and detected states based on our model. It can be seen that, for this
example, the method can recognise left turn and right turn without any misclassification
errors.
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Figure 3 Detection of events using method 1 (see online version for colours)

Method 2

Here, we have used the estimated emission matrix from the training set, but we have
re-estimated the transition matrix from the new signal based on the EM algorithm.

The re-estimated transition matrix:


R S L

R 0.872 0.100 0.028
S 0.029 0.957 0.014
L 0.032 0.089 0.879


The true and detected states for the new signal are shown in Figure 4, where we can see that
there are some misclassifications, and hence the misclassification error rate in this case is
higher than in method 1.

Comparison between method 1 and 2

To get the misclassification error rates, we have calculated both type I (false positive) and
type II (false negative) errors. If we find an event that does not exist, we get a false positive
error. However, if we cannot detect the true event, the false negative error will happen.

Most of the time, the duration of the detected events is not the same as the real events.
Therefore, we have considered the middle time of each detected event and we have compared
its label with the true label (hidden state) at that time. The number of times that we got
different labels divided by the number of events will be the false positive error rate. Further,
to get the false negative error, we have considered the true label of each event at the middle
and we have compared it with the detected label.
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Figure 4 Detection of events using method 2 (see online version for colours)

We have simulated signals with different numbers of events as our test sets (n = 10, 100),
in order to investigate the sensitivity to the sample size. We have changed the parameters
for the test sets to check how much they affect the results. For each case, we performed
1000 simulations to get an average of error rates. Three cases of straights of different
duration have been considered by setting θ = 4, 20, 100. For instance, by using θ = 100
we can illustrate a highway. Note that the length of the simulated signal depends both on n
and θ. The modified transition probabilities for the Markov chain is:


R S L

R 0 1− p p
S 0.5 0 0.5
L p 1− p 0


where the value p = 0.01, 0.1, 0.25. If we have a larger value of p it means we have more
curves in our simulations.

Figure 5 shows the error rates with regard to the different parameters. It can be seen
that if we change the p value then the figures will not change very much but if we change
the value of θ then there is quite a great change between the errors. When we have a small
test set, for method 2, the false positive error increases while the false negative decreases.
It means that we will detect more events that do not exist.

Generally, the type I error is lower for method 1, but the type II error is higher. If we
have a test set of only 10 events, then method 1 should be preferred since we do not have
enough data to estimate the parameters.

The simulation study does not give any clear observations, but it gives some indications.
If the parameters of the test set is similar to the ones in the training set, then method 1 should
be preferred. The emission matrix is expected to be similar for all road types. However, the
transition matrix should depend on the type of the road. For example if we have a lateral
acceleration signal from a city road as our training set and we want to detect events based
on a lateral acceleration signal from a highway, then the transition matrix from the training
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set cannot be good and it should be re-estimated from the new signal. Hence, method 2
should be used.

Figure 5 Type I and Type II errors (see online version for colours)

The simulation study indicates that method 1 is quite robust to changes in the transition
matrix, since it is possible to detect the events even though the transition matrix in training
and test sets is different. Method 2 can be used when we have a large enough test set to
accurately estimate the transition matrix.

3.2 Comparing HMMs with a simple method

Here, we have used a simple naive algorithm for detection of events and compared its result
with the HMM detection. The aim is to demonstrate the benefit of the HMM approach
compared to a simple threshold-based method.

The method detects the curves by using pre-defined thresholds for lateral acceleration
signals. If the absolute value of lateral acceleration is larger than 0.2 m/s2 for more than
1.5 s, then the algorithm will detect the event as a turning event.

We have just considered method 1, and the simulated lateral acceleration signal has
been used for this comparison. Figure 6 shows the results. It can be seen that HMMs work
much better than the simple algorithm to recognise the turning events.

3.3 Measured lateral acceleration signal

The measured data that we have used are field measurements coming from a Volvo Truck.
We have used the measured signal from the CAN bus and we have manually detected the
events by looking at video recordings from the truck cabin to see what happened during
the driving. By having the start and stop points of each event, we have created the hidden
Z-process.
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Figure 6 Comparing HMMs with a simple method (see online version for colours)

For the Y -process, we need a lateral acceleration signal which we have computed by using
the following formula:

“lateral acceleration” = “speed” · “yaw rate”.

To remove the high frequency noise, we have used a low-pass filter with 0.5 Hz cut-off
frequency. To reduce the amount of data, we have split the data into frames (the duration of
each frame is 0.5 sec) and calculated the mean value for each frame. We have translated the
continuous feature (mean value) into the predefined symbols in each frame by three classes
A, B and C where

• A =
{

“lateral acceleration” < −0.5 m/s2
}

,

• B =
{
−0.5 m/s2 ≤ “lateral acceleration” ≤ 0.5 m/s2

}
,

• C =
{

“lateral acceleration” > 0.5 m/s2
}

.

Compared to the earlier clustering, we have changed the threshold from 0.2 to 0.5 in our
clustering in order to improve the detection results.

The signal that is considered has the length of 3800 s, which we have divided into two
parts as our training and test sets. The training set has a duration of 2000 s and the test
set 1800 s. Figure 7 shows the training part of the signal and the corresponding manually
detected hidden states.

Method 1

First, we have used method 1 and estimated transition and emission matrices from the
training set, resulting in the transition matrix
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
R S L

R 0.945 0.055 0
S 0.001 0.997 0.002
L 0 0.048 0.952


and the emission matrix


A B C

R 0.418 0.582 0
S 0.031 0.957 0.012
L 0 0.363 0.637


The detected states based on method 1 for the test set are shown in Figure 8, where we can
compare them with the manually detected states.

Figure 7 Training part of measured lateral acceleration signal and the corresponding manually
detected hidden states (see online version for colours)

It can be seen that the misclassification error rate is quite high. In all cases, the method can
recognise the manually detected curves. However, we have a false positive error since the
method has found five right turns that are not in the manual detection. One reason could be
that the manual detections are not completely correct because of the visual errors and the
low quality of videos used for the manual detection. There is also a sharp left turn at the
end which could not be detected since the speed is low (about 10 km/h), thus giving low
lateral acceleration, and making it hard to recognise the curve correctly. However, this last
curve is on the borderline between curve and manoeuvring events, see below.

Method 2

In method 2, the transition matrix has been re-estimated based on the EM algorithm
resulting in the estimated transition matrix


R S L

R 0.895 0.105 0
S 0.004 0.995 0.001
L 0 0.033 0.967


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Figure 9 shows the results based on method 2. It can be seen that the results are the same
as for method 1. Since the road type of the test set is similar to the one in the training set,
methods 1 and 2 performed similarly to detect the events.

Figure 8 Detection of events in the measured signal using method 1 (see online version for colours)

Figure 9 Detection of events in the measured signal using method 2 (see online version for colours)
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3.4 Detection of manoeuvring events

For many steering components the so-called manoeuvring events generate the highest forces.
The manoeuvring events are considered as the events which will happen at speed less than
about 10 km/h. For instance, driving out of the parking lot and turning to the right and left,
reversing and manoeuvring into the parking lot and standing still but turning the steering
wheel are typical manoeuvring events.

We have applied the same technique as for the curves to detect manoeuvring events by
using HMMs. Three events steering right (SR), steering left (SL) and straight forward (SF)
have been considered as our hidden states (process Zt). We have considered the steering
angle speed signal as our data and translated this continuous feature into predefined classes
(process Yt). Three new classes have been used as follows:

• A = {“Steering angle speed” < −0.75 deg/s},

• B = {−0.75 deg/s ≤ “Steering angle speed” ≤ 0.75 deg/s},

• C = {“Steering angle speed” > 0.75 deg/s}.

where the threshold 0.75 deg/s has been chosen based on experience.
Figure 10 shows the detected events based on HMMs and the corresponding manually

detected hidden states for a measured signal from the CAN bus data. For the estimation of
the HMM parameters, we have used method 1, i.e., the parameters are estimated based on
the manual detection as the training set. It can be seen that the HMM detection of events
agrees quite well with the manual detection. As mentioned before, the manual detections
are not completely correct because of the visual errors and the low quality of videos.

Figure 10 Detection of steering events in the measured signal (see online version for colours)
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4 Conclusion

The examples in this study indicate that the HMMs can be used to recognise steering
events such as curves and manoeuvring based on vehicle logging data. We have considered
the steering events, i.e., right turn, left turn and straight forward, as the hidden states and
constructed the model based on them. The parameters of the model have been estimated
by considering two different methods. In method 1, we have estimated the transition and
emission matrices from the training set, while in method 2 the emission matrix has been
fixed from the training set and the transition matrix has been re-estimated based on the
test set. The results of the simulation study show that method 1 should be preferred if the
parameters of the test set are similar to the ones in the training set, i.e., the characteristics of
the roads are likely to be similar. The emission matrix is expected to be similar for all road
types. However, the transition matrix should depend on the type of the road. For instance,
if we have a lateral acceleration signal from a city road as our training set and we want
to detect events based on a lateral acceleration signal from a highway, then the transition
matrix from the training set cannot be good and it should be re-estimated from the new
signal. In that case method 2 should be used.

In this study, we have separated the curve and manoeuvring events and constructed
two different models, HMMC for the curves and HMMM for the manoeuvres. Another
approach can be to combine the two models into a larger HMM containing both curve and
manoeuvring events. In that case there will be several essential signals which will increase
the number of classes in the Y -process.
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Forces during steering events, such as curves and maneuvers, cause large stresses on steering compo-
nents. In this paper, we formulate a model for the lateral loads causing fatigue damage of the steering
components. Steering events are identified using a Hidden Markov model on the CAN (Controller Area
Network) bus data. The CAN data is available on all vehicles, thus the model is applicable across many
types of vehicles. To identify the events, the observation from CAN data is modeled by a multivariate
generalized Laplace (GAL) distribution. An explicit formula for the expected fatigue damage is given.
Results are validated using measured lateral acceleration.

& 2015 Published by Elsevier Ltd.

1. Introduction

Fatigue is a process of material deterioration caused by variable
stresses which may lead to failures of metallic components. Only
parts of loads causing large oscillations influence the fatigue life.
Knowledge about the variability of external loads can be used to
design market specific vehicles. In this study we consider steering
components for which the large stress oscillations occur during
turnings which will be called driving events.

The paper deals with two problems: The first is development of
methods to estimate some market specific statistical character-
istics of driving events, e.g. the frequency of events. The second is
computation of the expected damage for a steering component.

There exist a large number of different markets and customer
types for which one would like to know the load acting on ve-
hicles. Field measuring of forces is both time consuming and
costly. Thus it is proposed to use statistics of occurrences of driving
events to describe load environments encountered by vehicles. In
this paper we present means to estimate driving events statistics
using CAN (Controller Area Network) bus data, which is available
for all vehicles. Since the driving events are not recorded in CAN
data we extract them using a hidden Markov model (HMM) [6],
where each event represents a hidden state.

The idea of using HMMs to find driving events is not new, see
Maghsood and Johannesson [18,17], Mitrović [21,22] and [1]. The
novelty of our approach is to use a multivariate generalized

Laplace model (GAL) as the distribution of the observation process
in the HMM. Recent results show that Laplace models are well
suited to describe responses measured on driving vehicles, see
[27,16,4]. In previous works, the observation process has been
discretized by using thresholds. The continuous model, used here,
has two main advantages over the discrete version. First, in the
discrete model one has to manually set the threshold levels,
whereas the continuous model is entirely estimated from the ac-
tual data. Second, the continuous model can easily be extended to
incorporate multivariate sources of information, which is not easy
for the discrete threshold approach.

Using the hidden states above, we get a sequence of driving
events, which we model with a Markov chain (MC). The MC is
specific to the market or customer type, and since it is vehicle
independent we use it to describe the variability of expected load
environment. However, fatigue life depends on vehicle responses
and properties of the steering component used. Consequently gi-
ven a model for load environment, one needs to evaluate expected
damage for a component. This is done as follows: using laboratory
tests or designed measurements on test trucks, a distribution of
loads acting on a component during a driving event is found. By
attaching independent random variables, with the event specific
distributions derived above, on each steering event, we have
constructed a reduced load model. By the Markov property for the
reduced load model a closed form formula for the expected da-
mage is derived. Modeling load sequences by Markov chains is not
new, see e.g. [3,8–11,13,15,25,28]. However, the presented formula
was not given previously in the literature and the stringent proof
of the result is presented in the Appendix.
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Finally, we validate our method on a real data set, with field
measurements of loads acting on a steering component in a Volvo
truck. First, we show that the steering events found in CAN data
are responsible for the large oscillation of forces acting on steering
component. This is done by constructing a reduced load, which
consists only of the extreme load values occurring during steering
events. If the damage from the reduced load is close to the ob-
served damage computed using continuously measured forces, we
conclude that the steering events accurately capture the variability
of the load. Second, we verify that the expected damage of the
reduced random load is close to the observed damage.

The paper is organized as follows. The theory and some pre-
liminaries are presented in Section 2. The proposed load model
and the way for detecting driving events are presented in Section
3. In Section 4, measured data are used to validate the models and
to illustrate the results.

2. Theory and preliminaries

In this section, theory and known results needed in this paper
are presented. We start with a short description of HMMs and the
generalized asymmetric Laplace distribution used to detect the
sequence of driving events in CAN data. Further counting rainflow
cycles procedure is presented in Section 2.2, while definition of
damage index is given in Section 2.3.

2.1. Event identification using HMMs with Laplace distribution

Hidden Markov models [6] are one of the most useful statistical
models to identify the patterns in signals. The model consists of
two processes: a hidden, that is not observed, Markov chain S{ }t t 0=

∞

and a observed process Y{ }t t 0=
∞ . Conditioning on S{ }t t 0=

∞ , the ob-
served process Y{ }t t 0=

∞ is a sequence of independent random vari-
ables with distributions depending only on St.

In this paper, Yt has the generalized asymmetric Laplace dis-
tribution (GAL), see [14]. As mentioned in the Introduction the
Laplace distribution has recently been successfully used to de-
scribe the loads acting on vehicles.

The GAL distribution is defined by the following parameters: δ
– location vector, μ – shift vector, 0ν > – shape parameter, and Σ –

scaling matrix and denoted byGAL ( , , , )δ μ ν Σ . The one-dimensional
GAL distributions dependences on the shape parameter, ν, is il-
lustrated in Fig. 1. An important property of the GAL ( , , , )δ μ ν Σ
distribution is that it has an explicit formula for the probability
density function (pdf), namely
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where d is the dimension of Y, c 2 T
2

1μ Σ μ= + − and K (. )d/2ν− is
the modified Bessel function of the second kind. A convenient
representation of a random variable Y having GAL distribution is

Y Z,1/2δ Γμ Γ Σ= + +

where Γ is the Gamma distributed with shape ν and scale one,
while Z is a vector of d independent standard normal random
variables.

2.2. Rainflow cycle

The rainflow cycle count algorithm is one of the most com-
monly used methods to count cycles. The method was first pro-
posed by Matsuishi and Endo [19]. Here, we shall use the defini-
tion given in [24] which is more suitable for statistical analysis of
damage index. Assume that a load x has N local maxima. Let Mi

denote the height of ith local maximum. Denote by mi
+ (mi

−) the
minimum value in forward (backward) direction from the location
of Mi until x crosses Mi again. The rainflow minimum, mrfc

i , is the
maximum value of mi

+ and mi
−. The pair m M( , )i

rfc
i is the ith rain-

flow pair and h x M m( )i i i
rfc= − . Fig. 2 illustrates the definition of

the rainflow cycles.
Counting rainflow cycles is equivalent to counting the number

of interval upcrossings by a load, denoted by N u v( , )osc , see [26,2]
for multivalued loads.

Remark 1. Note that some local maxima cannot be paired with
any of local minima in x. It will happen when the corresponding
rainflow minimum mi

rfc lies before or after the period that load
was measured. The sequence of maxima and minima which could
not be paired by means of rainflow method is called the residual
and has to be handled separately. Here, we let maxima in the re-
sidual form cycles with the preceding minima in the residual.

2.3. Fatigue damage index

The most common way to define fatigue damage, using rain-
flow cycles, is the Palmgren–Miner (PM) rule [23,20]

D x h x( ) ( ) ,
(1)i

N

i
1

∑α=β
β

=

where ,α β are material dependent constants. The parameter α�1
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Fig. 1. The figures illustrates the one-dimensional GAL pdf dependence of the shape parameter ν. For the figure to the left the parameter μ is zero giving symmetrical pdf,
while to the right μ is negative.

R. Maghsood et al. / Probabilistic Engineering Mechanics 41 (2015) 13–2014



is equal to the predicted number of cycles with range one leading
to fatigue failure (throughout the paper it is assumed that α equals
one). Various choices of the damage exponent β can be considered,
like 3β = which is the standard value for the crack growth process
or 5β = which is often used when a fatigue process is dominated
by the crack initiation phase.

The rainflow damage, given in Eq. (1), can also be computed
using number of interval upcrossings N u v( , )osc , viz.

D x v u N u v du dv( ) ( 1) ( ) ( , ) , (2)
v

osc2∫ ∫β β= − −β
β

−∞

+∞

−∞
−

as was proved in [26]. Note that the formula is only valid for 2β > .
For a discrete random load X X X( , , )n1= … , the damage D X( )β is

a random variable. The average growth of the expected damage

d
n

E D Xlim
1

[ ( )]. (3)n
=β β

→∞

is an important parameter describing severity of the random load.
The average dβ will be called the damage index. Note that due to
nonlinearity of rainflow counting method one has that

E D X n d[ ( )] .≤ ·β β

Finally, using Eq. (2), we get that

d v u u v du dv( 1) ( ) ( , ) , (4)
v

osc2∫ ∫β β μ= − −β
β
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−

where

u v
E N u v

n
( , ) lim

[ ( , )]
, (5)
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n

osc
μ =

→∞

which is called the intensity of interval upcrossings. Note that
N u v( , )osc is a function of X and hence also of n.

3. Reduced load

Let x(t) denote a load acting on a steering component. In order
to define the reduced load, first suitable driving events causing
large load oscillations need to be defined. In this paper steering
events are right turn, left turn and straight forward (RT, LT, ST).
The reduced load x{ }i i

N
0= consists of the extremal loads during the

turns.
More precisely, denote the ith turn by Zi which equals one if the

turn is a left turn, and two if the turn is a right turn. Note that each
Zi corresponds to a time interval t t[ , ]i start i stop, , , which represents the
start and stop points of ith turn.

Next, let

M x t m x tmax ( ), min ( ),i
t t t

i
t t t[ , ] [ , ]i start i stop i start i stop, , , ,

= =
∈ ∈

i.e. the ith maximum and minimum load during a turn. Further, it
is assumed that a vehicle is driving straight forward (SF) between
two turns and we let the reduced load be zero. Thus, the reduced

load is defined as follows:

⎧
⎨⎪

⎩
⎪⎪

x

i

M Z i

m Z i

0 if is odd integer,

if 1, is even integer,

if 2, is even integer. (6)

i i i

i i

/2

/2

= =

=

Finally, Fig. 3 illustrates a measured lateral load x t( )obs , say, and the
corresponding reduced load xi.

3.1. Markov model for reduced load

Environmental loads acting on vehicles often vary in an un-
predictable way. This property can be modeled by means of ran-
dom processes, i.e. one assumes that the measured load x(t) is a
realization of a random load X(t). Consequently the reduced load
defined in (6), denoted now by X{ }i i 0=

∞ , is a sequence of random
variables.

Here, we approximate the process Zi in (6) by a Markov chain
with two states, LT RT1 ” ”, 2 ” ”≔ ≔ , and transition matrix P p( )kj= .

Further, assume that M{ }i i 0=
∞ and m{ }i i 0=

∞ are independent and
identically distributed random variables. (Mi and mi, which are
vehicle dependent, may have different distributions.) The reduced
random load Xi is now defined by means of (6).

3.2. Damage index for reduced load

For random reduced load X X X( , , )0 1= … the damage index dβ,

defined in (3), is given by d E D Xlim [ ( )]n n
1=β β→∞ . The damage in-

dex can be computed using (4) whenever the interval upcrossing
intensity u v( , )oscμ is known. In this section we give an explicit
formula for u v( , )oscμ for a Markov model of the reduced load. In
order to evaluate the intensity u v( , )oscμ one first need to compute
probabilities p u v i( , ), 1, 2i = , where p u v( , )i is the conditional
probability that given Z i0 = , the sequence of extreme loads will
visit the set v( , )+ ∞ before it visits u( , )− ∞ . It will be shown in
the Appendix that the probabilities satisfy the following equation
system:

(7)p u v p P M v P M v p p P m u p p i( , ) ( ) ( ) ( ) , 1, 2.i i i i1 1 1 1 1 1 2 2= > + ≤ + ≥ =

An explicit formula for the interval upcrossing intensity by Xi is
given in the following theorem.

Theorem 2. For Xi defined in Eq. (6), u v( , )oscμ is given by

max

min rfc

h

Fig. 2. The rainflow cycle.
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⎧
⎨⎪

⎩⎪
u v

P m u u v

P m u p u v u v

P M v u v

( , )
1
2

( ), 0,

( ) ( , ), 0 ,

( ), 0 , (8)

osc

2 1

2 1 2

1 1

μ

π
π

π

=
< < <
< ≤ ≤

> < <

where p u v( , )2 is a solution to the equation system in (7).

Proof of the theorem is given in the Appendix.

3.3. Event reconstruction

In Section 3, Eq. (6), a reduced load was defined. In order to
create x{ }i i

N
0= one needs to find the number of driving events N, the

variables ti start, , ti stop, and Zi, for i N1, ,= … . In this section, we will
discuss the challenging task of finding sequence Zi in a, possible
multivariate, signal y{ }t t

T
1= . In this paper the signal y{ }t t

T
1= comes

from CAN data.
We start by formulating an HMM with multivariate GAL dis-

tribution on the signal y{ }t t
T

1= . We denote the hidden states S{ }t t
T

1= ,
which represent the driving events, LT, RT, and SF.

The model has two different types of parameters that need to
be estimated. The first type is the parameters in the distribution of
yt given St, which for our model is GAL. In this paper, these para-
meters are found by maximum Likelihood estimation on a training
data set where the driving events are known (such information is
not included in CAN data). The second type is the transition matrix
of S{ }t t

T
1= , which is obtained from the signal yt using an expectation

maximization (EM) algorithm, see [7,6]. Using the Viterbi algo-

rithm, see Viterbi [29], we recover the most likely sequence, St̂ , of
events given the data and the estimated parameters.

The elements Zi used in (6) is created as follows: First, let t{ }k k
N

1=
⁎

denote the indices when St̂ switches its values that are the indices

where S St t 1k k
^ ≠ ^

− . Further, for k N1, ,= … ⁎, define

⎧
⎨
⎪⎪

⎩
⎪⎪

Z

S SF

S LT

S RT

0 if ,

1 if ,

2 if .
k

t

t

t

k

k

k

=

=

=

=

⁎

Finally, the sequence of events Z{ }i i
N

1= is defined as Z{ }k k
N

1
⁎

=
⁎ with the

zero elements removed. The time intervals t t( , )i start i stop, , equal

t t( , )k k 1+ where k is the index of Zi in Z{ }k k
N

1
⁎

=
⁎
.

4. Example

In this section, we study lateral acceleration loads on a Volvo
truck. The lateral load is known to cause damage on steering
components. The measurements come from CAN data, and to
construct the lateral acceleration signal, we plug the yaw rate and
speed from CAN data into the following formula:

x
speed yaw rate

3.6
. (9)= ·

The latent events used are steering events occurring when
vehicle is driving with speed higher than 10 km/h, e.g. when
driving in curves. Three events right turn (RT), left turn (LT) and
straight forward (SF) are assessed in this study. From these event
we construct a reduced load, and then calculate the damage index.

The lateral acceleration signal from CAN data is proportional to
the lateral loads and is used to identify the steering events and
damage calculation.

It is important to point out that typically the related load acting
on steering components is not the same as the signal used for
detection. For instance, the maneuvering events, e.g. driving in or
out of a parking lot, standing still but turning steering wheel,

generate the highest forces in steering components. To detect the
maneuvers, the steering angle speed from CAN data is used while
for damage calculation the link rod force is used. The link rod force
is not included in the CAN data and it has been separately mea-
sured. The model proposed in this paper was also used in this case
and the derived reduced model gave very accurate estimates of the
damage index. Unfortunately, this example will not be presented
in this paper, since the data set was very small and thus we could
not use it for a rigorous statistical analysis.

4.1. Detection of steering events using HMMs

In order to find the steering events we set a HMMmodel on the
lateral acceleration. A training set is used to estimate the para-
meters of HMM and a test set is used to validate the model. In our
study, the training set contains all necessary information about the
events such as the duration of the curves, whereas for test set we
use only the lateral acceleration.

We manually identified the events by looking at video re-
cordings from the truck cabin to create the training and test sets.
By having the start and stop points of each event, we have created
the sequence of steering events. We split up the data into training
and testing sets. For the training set, we fitted the generalized
Laplace (GAL) distribution for observations within each state. This
gives us the conditional densities of the observed lateral accel-
eration for each steering events. The fitted distributions for lateral
acceleration values within each event are shown in Fig. 4.

On the test data we get, using the EM-algorithm, the estimated
transition matrix:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

RT SF LT

RT
SF
LT

0.948 0.049 0.003
0.003 0.994 0.002
0.002 0.032 0.966

Finally, we detected 34 turns in the signal using Viterbi algo-
rithm. The measured lateral acceleration signal and the detected
steering events based on HMM for the test set are shown in Fig. 5,
where we can compare the detection result with the manually
identified events.

It can be seen that the HMM algorithm can recognize most of
the manually detected turns. However, the manually identifica-
tions are not completely correct because of the visual errors and
the low quality of videos.

4.2. Validation of reduced load

In this section we investigate if the random load approximates
the measured load xobs sufficiently well. Based on the detected
steering events, the reduced load x x x( , , )n0= … is estimated by
the sequence of the extreme loads during right and left turns and
zeros for driving straight.

To evaluate the accuracy of the proposed load model, two is-
sues should be investigated:

(I) Whether the reduced load x contains all large rainflow cycles
that were found in the load xobs. By this we control whether
the assumption that load is zero when the vehicle is driving
straight forward is not too crude and whether the HMM al-
gorithm detects correctly the steering events.

(II) Whether the random load X X X( , , )n0= … , defined in Section
3.1 using Eq. (6), is accurately describing the variability of
rainflow ranges counted in the reduced load x.

We investigated the problem (I) by comparing the rainflow
cycles found in the measured load xobs and in the reduced load x.
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Furthermore the damages D x( )obs
β , D x( )β and the expected damage

E D X[ ( )]β , for 3, 5β = , are evaluated.
The problem (II) is addressed by studying the variability of the

damage D X( )β and checking whether D x( )β does not differ sig-
nificantly from samples of D X( )β . In addition the rainflow range
spectrum, see Eq. (11), found in x is compared with the expected
spectrum and with the simulated spectra, i.e. found in samples of
X.

4.2.1. Comparison of rainflow counts
The sequence of detected right and left turns are modeled by a

Markov chain. The transition matrix P is estimated, by counting
the number of transitions between the turns, to

⎛
⎝⎜

⎞
⎠⎟

0.32 0.68
0.86 0.14

.

The extreme values of load occurring during the steering events

are modeled by independent Rayleigh distributed variables. The
Rayleigh distributions are fitted to the maximum value of xobs

during a left turn and minimum value of xobs during a right turn
giving

(10)P M v e v P m u e u( ) , 0, ( ) , 0.v u1 (1/2)( /0.8)2 1 (1/2)( /0.7)2> = ≥ < = ≤− −

The matrix P and the parameters of Rayleigh distributions define
together the reduced random load X.

As mentioned above, the lateral acceleration is used as the load
xobs. The load is shown in the top plot of Fig. 6(a) as a solid irre-
gular line. In the figure, the stars are the extreme values of load
occurring during right and left turns and constituting the reduced
load x. Rainflow cycles have been found both in the load and in the
reduced load and are compared in Fig. 6(b). The rainflow cycles
found in the measured load are marked as dots having coordinates
m M( , )rfc . One can see that there are few large cycles and many
small ones. The rainflow cycles found in the reduced load are
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presented as circles. As can be seen in Fig. 6(b), the largest cycles
are counted both in lateral acceleration and in the reduced load.
However there are also many moderate size rainflow cycles found
in the lateral acceleration which are missing in the reduced load
rainflow count. We conclude that the largest cycles found in both
the lateral acceleration signal and the reduced load are not of
higher order of magnitude than cycles occurring during the event
SF. Hence, we can expect that the damage computed for the lateral
acceleration signal will be higher than the damage estimated for
the reduced load.

The damages evaluated for the load (lateral acceleration), re-
duced load and the expected damage are compared in Table 1. The
numerical integration in (4) as well as the rainflow cycle counting
has been done using the WAFO (Wave Analysis for Fatigue and
Oceanography) toolbox, see [5,30,31], which can be downloaded
free of charge.

Since the largest rainflow cycles are found both in lateral ac-
celeration and reduced load, the damages D x( )obs

5 and D x( )5 are
almost identical. The large number of moderate size cycles found
when the vehicle was driving straight forward is contributing to
D x( )obs

3 and not to D x( )3 and hence there is larger difference be-
tween values of these two damages. The expected damage
E D X[ ( )]β is larger than D x( )β . Whether this difference is significant
will be investigated next.

4.2.2. Comparison of load spectra
We investigated whether the variability of the reduced load x is

well modeled by the random load X. It is well known that the
cycles with small ranges do not contribute much to the fatigue
damage and hence their distribution not need to be accurately
modeled. However these may heavily influence the ranges cdf
leading to rejection of practically “good” model. In engineering

one often prefers to use the so-called load spectra to compare
rainflow cycles distributions. The load spectrum is defined as
follows:

Consider a load y having N rainflow cycles and the rainflow
ranges with the cdf F h( )rfc . Let H be a random variable having cdf
F h( )rfc . Then, the damage is

D y N E H N P H h h dh( ) [ ] ( ) .
0

1∫β= · = · >β
β β

∞
−

If for two loads the functions N P H h N F h( ) (1 ( ))rfc· > = − are close
for high and moderate values of h, then for any 1β > the damage
indices are close too. Traditionally, one defines the load spectrum S
(h) to be the inverse of function of N F h(1 ( ))rfc− . Then, the plot of
load spectrum h S h( , ( )) coincides with the graph of the following
line:

( )N F h h h(1 ( )), , 0, (11)
rfc− ≥

see [12] for more details.
The load spectrum in (11) was found for the lateral acceleration

xobs and reduced load x. The expected load spectrum was also
evaluated by integrating n u v( , )oscμ· over suitable regions. In Fig. 7
(a), the load spectra for the lateral acceleration, reduced load x and
the random load X are compared. The observed load spectrum
contains much more small and moderately high ranges than the
remaining two spectra. Further the expected load spectrum,
shown as a smooth line, is close to the load spectra of the reduced
load.

In Fig. 7(b), the expected load spectrum is compared with 10
load spectra computed from simulated samples of the random
load. In the figure, the smooth solid line is the expected load
spectrum evaluated using n u v( , )oscμ· while the thick stairs looking
like line is the load spectrum found in the reduced load. Except
cycles with very small ranges, one can see that the load spectrum
of x does not differ significantly from the simulated load spectra.

5. Conclusion

In this paper, we have proposed an hidden Markov model
(HMM) for detection of steering events using on-board logging
signals available on trucks. Using the model we have shown how
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Fig. 6. (a) Top: solid irregular line is xobs (lateral acceleration) while the thin red line is x (reduced load). Stars represent the extreme values of load occurring during the
steering events. Bottom: detected curves. (b) Dots – the rainflow cycles found in xobs. Circles – the rainflow cycles counted in x. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)

Table 1

Comparison of damages D x( )obsβ computed for the measured load, D x( )β for the

reduced load and the expected damage E D X[ ( )]β .

D x( )obsβ D x( )β E D X[ ( )]β

3β = 33.6 24.7 26.9
5β = 53.7 51.6 79.7
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to construct a reduced load, by keeping the sequence of the most
extreme forces during steering events. We further proposed a
random load model by first, modeling the sequence of steering
events, which is vehicle independent information, with a two
states Markov chain. Then, assuming that the extreme forces oc-
curring during the steering events, which is vehicle specific in-
formation, are independent random variables. An explicit formula
for the expected fatigue damage was presented.

The proposed models were validated using measured data from
a Volvo truck. The results show that all large rainflow cycles found
in measured load were found in the reduced load. Hence, the fa-
tigue damage of steering components can be predicted by reduced
load. By simulations, we showed that the observed load spectrum
did not significantly differ from the load spectra found in the si-
mulated loads. It can be concluded that the proposed load model
accurately describe the variability of the rainflow ranges for the
considered measured load. Further, using the model the expected
damage could be predicted.
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Appendix A

Proof of Theorem 2

Consider the stationary time series Xi defined in Eq. (6). Let k be
the number of maneuvers and random load X X i n{ : 0, , }i= = … ,
n k2= . We recall that u v E N u v( , ) [ ( , )]n

osc
n
oscμ = is the expected

number of upcrossings of the interval u v[ , ] found in X while the
intensity of interval upcrossings

u v
n

u v( , ) lim
1

( , ).osc

n n
oscμ μ=

→∞

We begin with a definition of N u v( , )n
osc . Consider a load starting

at time zero, i.e. infinite sequence x x x( , , )0 1= … of real numbers.
For fixed u v, , u v≤ , i 0≥ and j i 1> + define the following sets:

A x u x v

A x u x v u x v l i l j

{ } { },

{ } { } { for all , }. (12)

i i i

ij i j l

1= < ∩ >

= < ∩ > ∩ ≤ ≤ < <
+

Let x1 ( )A be the indicator function of A, i.e. equal to one if x A∈
and zero otherwise. Now for fixed u v≤ , m 2≥ and x Rm 1∈ + we
will denote the number of upcrossings of interval u v[ , ] found in x,
i.e. N u v( , )m

osc , by Nm(x). Using the sets Ai and Aij, defined in Eq. (12),
one obtain that

N x x x1 1( ) ( ) ( ).
(13)

m
i

m

A
i

m

j i

m

A
0

1

0

2

2
i ij∑ ∑ ∑= +

=

−

=

−

= +

Now, we turn to evaluation of u v E N X( , ) [ ( )]n
osc

nμ = for n k2= .
The domain of μosc

n is divided into three regions; u v 0≤ < ,
u v0 < ≤ and u v0≤ ≤ .
Region u v 0≤ < : Since Xi¼0 for all odd indices then Nn(X) is

equal to number of X u 0i2 < < , i k0 1≤ ≤ − . Consequently

u v k P m u( , ) ( )n
osc

2 1μ π= < and u v P m u( , ) ( )osc 1
2 2 1μ π= < . (Recall

that mi, Mi are independent sequences of iid random variables.)
Region u v0 < ≤ : Similarly Nn(X) is equal to number of

X v 0i2 > > and hence u v k P M v( , ) ( )n
osc

1 1μ π= > . Consequently

u v P M v( , ) ( )osc 1
2 1 1μ π= > .

Region u v0≤ ≤ : Computation of u v( , )n
oscμ and u v( , )oscμ when

u v0≤ ≤ is more complex. Let Yi denote the sequence of extreme
loads:

⎪

⎪⎧⎨
⎩Y

M Z

m Z

if 1,

if 2. (14)
i

i i

i i
=

=
=

The number of crossings of intervals u v[ , ], u v0≤ ≤ found in
sequences Xi, i n0, ,= … , and Yi, i k0, ,= … , are equal, i.e.

N X N Y Y X( ) ( ), .n k i i2= =

Now from the definition of Nk(Y) in Eq. (13), it is easy to see that

100 101 102 103 104 105
0

0.5

1

1.5

2

2.5

3

3.5

4

Cumulative frequency of cycles

R
an

ge

Load spectra

100 101 102 103 104 105
0

0.5

1

1.5

2

2.5

3

3.5

4

Cumulative frequency of cycles

R
an

ge

Load spectra

Fig. 7. (a) Comparison of load spectra (rainflow ranges). The regular solid line is the theoretical spectrum computed from n u v( , )oscμ· , n¼68. The stairs like functions are the
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u v P Y A P Y A( , ) ( ) ( ).n
osc

i

k

i
i

k

j i

k

ij
0

1

0

2

2

∑ ∑ ∑μ = ∈ + ∈
=

−

=

−

= +

Since Yi is a stationary sequence hence P Y A P Y A( ) ( )i 0∈ = ∈
and P Y A P Y A( ) ( )ij j i0( )∈ = ∈ − for any j i 2≥ + . Consequently, with
P P Y A( )1 0= ∈ and P P Y A( )l l0= ∈ , l 2, 3,= …,

u v kP P kP P k i P( , ) ( 1) .n
osc

i

k

j i

k

j i
i

k

l

k i

l
i

k

i1
0

2

2
1

0

2

2 1

∑ ∑ ∑ ∑ ∑μ = + = + = − +
=

−

= +
−

=

−

=

−

=

Hence the intensity u v( , )oscμ is given by

u v
n

i k P P( , ) lim
1

lim
1
2

(1 ( 1)/ )
1
2

,osc

n n
osc

k
i

k

i
i

i
1 1

∑ ∑μ μ= = − − =
→∞ →∞ = =

∞

by dominated convergence theorem ( P 1i i1∑ ≤=
∞ ). Next we will

employ Markov property to evaluate u v( , )oscμ .
Let introduce the following sequence of events Bi, i 1≥ :

B Y v

B Y v u Y v l i i

{ }

{ and for all 1 }, 1. (15)i i l

1 1= >

= > ≤ ≤ ≤ < >

Using Bi the sum Pi i1∑ =
∞ can be written as follows:

P P Y A Z P Y A Z

P B Z Y v P Y v Z

P m u P B Z

( and 2) ( and 2)

( 2, ) ( , 2)

( ) ( 2).
(16)

i
i

i
i

i
i

i
i

1
0 0

2
0 0

1
0 0 0 0

2 0
1

0

∑ ∑

∑

∑π

= ∈ = + ∈ =

= | = < < =

= < | =

=

∞

=

∞

=

∞

=

∞

Since probabilities pj introduced in Section 3.2 are given by

p u v P B Z j j( , ) ( ), 1, 2,j
i

i
1

0∑= | = =
=

∞

one has that P P m u p u v( ) ( , )i i1 2 2π∑ = <=
∞ . This finishes the proof of

Eq. (8).
Finally we demonstrate that p u v( , )2 is the solution of Eq. (7).

Using Markov property one can evaluate pj in the following way:

p u v P Y v Z j P B u Y v Z l Z j

P u Y v Z l Z j P Y v Z j P B Z l

P u Y v Z l p P Y v Z j P u Y v Z l

p P B Z l P Y v Z j P u Y v Z l

p p u v

( , ) ( ) ( , , )

( , ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( , ).

j
l i

i

l i
i

jl
l

jl
i

i
l

jl l

1 0
1

2

2
1 1 0

1 1 0 1 0
1

2

2
1

1 1 1 0
1

2

1 1

1
0 1 0

1

2

1 1

∑ ∑

∑ ∑

∑

∑ ∑

= > | = + | ≤ ≤ = =

· ≤ ≤ = | = = > | = + | =

≤ ≤ | = = > | = + ≤ ≤ | =

| = = > | = + ≤ ≤ | =

= =

∞

= =

∞

=

=

∞

=

This completes the proof.
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Abstract 

We consider the loads that are related to steering events, and focus on the events that cause high forces on steering components.

The load is simplified by keeping the extreme force value for each driving event. We define a simplified stochastic model for the

load by modeling the extreme value for each driving event by a random variable. We give formulas to compute the theoretical load

spectrum and the expected fatigue damage caused by the driving events. Further, in a sensitivity study we investigate how much 

the expected damage depends on the variability of parameters of the proposed model.  

© 2015 The Authors. Published by Elsevier Ltd. 
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Keywords: Fatigue damage index; hidden Markov models; Markov chain; rainflow cycles; vehicle independent load models; steering events. 

1. Introduction 

In vehicle engineering, durability is an important aspect of designing a vehicle with high quality in its components. 

Therefore, considering the service loading conditions is necessary. In addition, in fatigue design the loads need to be 

assessed. By describing the load environment, the customer usage and the vehicle dynamics one can define the load 

conditions [1].  
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Nomenclature 

      hidden Markov model parameters        d               damage intensity 

)(xD      damage index          )( XDE expected damage index 

,      material constants for Palmgren–Miner’s rule      ),( vuN rfc     rainflow counting distribution 

vu ,      lower and upper ranges for cycle range                         ),( vuosc    intensity of interval crossings 

For vehicle companies, it is important to characterize the way that the trucks have been used. They want to describe 

the usage of the trucks in a way that it is independent of the vehicle. The loads will be different for different usage of 

trucks and for different driver’s behavior. A driver can affect the load by changing the speed, braking or adapting to 

the curves. These behaviors can be characterized as driving events and can be assessed using measurements obtained 

from specially equipped vehicles on a test track. Measuring the load on each truck is expensive. However, they want 

to measure and identify activities of the driver and specify the relevant events occurring on the road. To identify the 

events we need to use the information available for all vehicles by means of CAN (Controller Area Network) bus data. 

If we define the events such as static steering by using the information from CAN data, we can detect the amount of 

events that are occurring in customer vehicles. Then, it is possible to calculate the forces generated from the same kind 

of events by repeating the loads under well-defined conditions on a proving ground. By using the force signal we can 

clarify which occasions will generate high forces. 

We have proposed a stochastic model of loads related to the steering events such as curves and maneuvers, which 

cause large forces acting on steering components. An explicit formula for calculating the expected fatigue damage 

based on identified driving events is given, see also Maghsood and Rychlik [2]. The expected damage depends on the 

frequencies of driving events and the expected value of the extreme force during an event. The model consists of two 

parts; description of the sequence of steering events and the model for the extreme loads occurring during the events. 

The sequence of steering events is modeled by means of a Markov chain. This is a vehicle independent part of the 

load. For simplicity, the extreme forces during the events are assumed to be statistically independent. Their 

distributions may depend on the type of steering event, e.g. (left, right) cornering, slow maneuver to the right or to the 

left etc. The parameters of the distributions are vehicle dependent and need to be estimated using dedicated 

measurement campaigns or test track measurements. In the examples in Sections 5 and 6, the Rayleigh distribution 

will be used to describe the variability of extreme forces. Further, the uncertainty in fatigue damage due to model 

parameters will be discussed. 

The paper is organized as follows. In Section 2 hidden Markov models (HMMs) based algorithm to detect the 

steering events is reviewed. The proposed model for loads and means to calculate the expected damage are described 

in Sections 3 and 4. Examples and their results for measured data are shown in Section 5. In Section 6 the sensitivity 

analyses are investigated. Conclusions are presented in Section 7. 

2. Detection of the steering events 

Hidden Markov models (HMMs) have been proposed for detection of steering events such as curves and 

maneuvering using on-board logging signals available on trucks, such as lateral acceleration, vehicle speed and 

steering wheel angle. The idea is to consider the current driving event as the hidden state and set up the model based 

on them, see Maghsood and Johannesson [3, 4].  

We have used a discrete HMM, ),,( BA  where  represents model parameters which contain the transition 

matrix, the emission matrix and the initial state distribution. The parameters must be estimated to characterize the 

model, see Rabiner [5] for more details.  

In an HMM, a training set is used to estimate the parameters of the model, while a test set is used to validate the 

model. A training set consists of all necessary information for estimating the model parameters. In the examples, the 

training set contains all history about the curves such as the start and stop points of them. Fig. 1 shows a lateral 

acceleration signal and the corresponding identified hidden states process. 
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3. Random model of lateral loads based on steering events 

Modeling of the external loads is an important aspect in durability studies of vehicle components. The approach 

taken here is to approximate the load by a vehicle independent sequence of steering events, here representing Left and 

Right steering (SL, SR) or Left and Right turns (LT, RT). In both cases the two events are separated by a section when 

wheels have approximately zero turning angle, which is called Straight forward (SF). Thus, a reduced load can be 

defined by keeping the extreme value for each left and right event and set zero for each straight forward event. The 

most extreme value of the load will be modeled by a random variable
iY . First the variability of the sequence of 

steering events is modeled by a Markov chain 
iZ  having two states "1" and "2", then the values of extreme forces 

during events will be modeled. The Markov chain is defined by a transition matrix 2,1,),( jiijpP , where ijp

denotes the transition probabilities between the states. 

Let ,...2,1,0, iM i
 be a sequence of independent and identically distributed (iid) positive random variables 

while ,...2,1,0, imi
denotes the negative random variables. Assume that the three sequences 

00
,

iiii MZ and

0iim are independent. The process 
iZ  is vehicle independent while 

iM  and im depend on the vehicle, driver etc. 

The sequence of extreme loads ,...2,1,0, iiY , is defined by:  

.2,

,1,

ii

ii

i
Zifm

ZifM
Y          (1) 

Finally, we can define the random load ,...2,1,0, iX i
by adding zeros between 

iY  and 
1iY  for each straight 

forward event: 

otherwiseY

oddisiif
X

i

i
,

,,0

2/

        (2) 

4. Fatigue damage index 

The aim is to compute the expected damage based on the detected driving events. To evaluate the model, we will 

compare the estimated damage index from the measured forces using rainflow method with the expected damage from 

the proposed load model. To calculate the damage, we have used forces which are measured from specially equipped 

vehicles on a test track. First we will review some models and methods on fatigue damage. 

Assume that the measured load x  is given in form of time series niix ,...,2,1,0, . The risk for fatigue failure in 

the material is often measured by means of a damage index which can be computed by Palmgren-Miner rule [6, 7], 

viz. 

0 200 400 600 800 1000 1200
−5

0

5

Lo
ad

0 200 400 600 800 1000 1200

RT

SF

LT

Time(s)

D
et

ec
te

d 
ev

en
ts

Fig. 1. Lateral acceleration signal and the corresponding detected events.
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N

i

i

N

i i

h
N

xD
11

1
)(                                          (3) 

where 
iN is the number of cycles having ranges 

ih to failure estimated in constant amplitude tests and presented in 

form of S-N curve.. The parameter is the fatigue strength of the material and is the damage exponent. 

The variability of the load is modelled by means of random processes. Therefore, the measured load x is one of 

many possible realizations of the process. For the random loads, the rainflow ranges become random variables and 

the damage index is a random quantity too. The variability of the rainflow cycles can be described using a cumulative 

histogram ),( vuN rfc
which is called the rainflow counting distribution. The rainflow counting distribution 

),( vuN rfc is equal to the number of times that the load niix ,...,2,1,0, , crosses an interval vu ,  in upward 

direction, denoted by ),( vuN osc

n
. The equality between the rainflow counting distribution and the interval crossing 

was shown independently in [8] and [9].  

The damage intensity can be used to measure the severity of the random load and it can be computed using the 

intensity of interval crossings: 

,
),(

lim),(
n

vuNE
vu

osc

n

n

osc          (4) 

then the damage intensity is 

.),()()1( 2 dudvvuuvd osc

v

       (5) 

The main result is an explicit formula for ),( vuosc  based on the random load
iX :

vuvMP

vuvupumP

vuumP

vuosc

0),(

0),,()(

0),(

2

1
),(

11

212

12

      (6) 

where ),(2 vup is the solution to the equation system  

).,()(),()()(),(

),,()(),()()(),(

222112111212

212111111111

vuppumPvuppvMPvMPpvup

vuppumPvuppvMPvMPpvup
   (7) 

 see [6] for more details and prof of formula (6). 

5. Example 

The results are presented for maneuvering events. The curves were also studied in [2] but the results will not be 

presented here. The maneuvering events, i.e. driving in or out of a parking lot, standing still but turning steering wheel,  

Fig. 2. Reduced load represented by dots compared with observed load, lateral acceleration, represented by the irregular 

solid line.
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are considered as the events which will happen in speed less than about 10 km/h. Here, three maneuvering events are 

considered; Steering Left (SL), Steering Right (SR) and Straight Forward (SF). The measured loads are denoted by
obsx . First, the steering events were detected using HMM algorithm, then the extreme loads during events were found. 

We assume that each event follows by a driving straight section. The signal consisting of the extreme loads during 

steering events and zeros for section when vehicle is driving straight will be denoted by ),...,,( 10 nxxxx  and called 

the reduced load. In Fig. 2 part of measured load 
obsx  (lateral acceleration) is shown as the solid line while the 

reduced load x by dots. 

The link rod force is used as the load and it is shown in the top plots of Fig. 3a. The extreme forces are negative, 

positive and zero in the three states SR, SL and SF, respectively. In the figure stars are the extreme rod forces, 

occurring during maneuvers, constituting the reduced load. In the lower plot of Fig. 3a, the detected time periods with 

21 detected maneuvering events are shown.  

   (a)                                                                                   (b) 

The rainflow cycles have been found both in the load and in the reduced load and compared in Fig. 3b. The rainflow 

cycles found in the measured link rod force are marked as dots. One can see that there are few large cycles and many 

very small ones. The rainflow cycles found in the reduced load are presented as circles. As can be seen in Fig. 3b, all 

large cycles found in the link rod force are also found in the reduced load and hence one can expect that the damage 

index computed for the measured load and the reduced load should be very close.  

The estimated transition matrix according to the detected maneuvers is  

.
1.09.0

10
P

The Rayleigh distributions have been fitted to positive and negative values, respectively. The estimates of the 

parameters of Rayleigh distributions were very close. The difference between the parameter values were not 

significant hence the average value (6.1) of the parameters have been used. 

Table 1 shows a comparison of the damage indexes )( obsxD  computed for measured load, )( xD  for the reduced 

load and the expected damage index )(XDE  for the random model of the reduced load. Damage indices )( obsxD

and )( xD  are given in columns 2 and 3. As expected these are almost identical. We conclude that the reduced load 

models well the variability of the measured load. Further, the expected damage of the model is quite close to the 

measured one. 

Fig. 3. (a) Top: solid irregular line is the measured link rod force while stars represent the reduced load. Bottom: Detected maneuvers. 

(b) Dots - the rainflow cycles found in the measured link rod force. Circles - the rainflow cycles counted in the reduced load.

0 20 40 60 80 100
−20

−10

0

10

20

Link rod

Time(s)

L
o

a
d

0 20 40 60 80 100

SR

SF

SL

Detected maneuvering events

Time(s)

S
ta

te
s

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15
Rainflow cycles

Min

M
a
x



273 Roza Maghsood et al.  /  Procedia Engineering   101  ( 2015 )  268 – 276 

Table 1. Comparison of damage indices )( obsxD computed for the measured load, )( xD for the reduced load and the expected damage 

index )( XDE .

Damage )( obsxD )(xD )( XDE

3 3109.39 3109.34 3108.35

5 61070.1 61070.1 61047.1

In Fig. 4a, the load spectra estimated from the measured link rod force and the reduced load are compared with the 

theoretical load spectrum. As can be seen in Fig. 4b, where the load spectra for 10 simulated loads are compared with 

the theoretical load spectrum and the load spectrum of the reduced load, the differences between the measured 

spectrum and the expected one does not seem to be significant. 

     (a)                                              (b) 

6. Sensitivity analysis of the damage index 

As it was mentioned before, the sequence of steering events is modeled by a Markov chain with transition matrix

P . This sequence is a vehicle independent part of the load. The extreme forces during the events are assumed to be 

statistically independent, but their distributions depend on the type of steering event. The parameters of the 

distributions are vehicle dependent and need to be estimated using dedicated measurement campaigns or test track 

measurements. In the examples, Rayleigh distributions have been fitted to positive and negative values. Now suppose 

that both distributions have the same parameter , viz. 

0,)(0,)(
22 )(

2

1

1

)(
2

1

1 ueumPvevMP

uv

     (8) 

then the load can be written as a scaled standard load, XX ˆ , where X̂ is a reduced load with standard Rayleigh 

random variables, 2/2

)( rerRP . Therefore, the oscillation intensity can be written as a scaled one, namely  

).,(ˆ),(
vu

vu oscosc          (9) 

Further, the damage index can be calculated as ,d̂d where d̂  is the expected damage computed by the 

standard Rayleigh distribution. This means that the expected damage index is a factor of the parameter  to the power
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Here, we will consider two types of uncertainties. The variability of the load environment will manifest in the 

transition matrix P and the vehicle dependent variability in the parameter  of the Rayleigh distribution. In the 

following subsections we will study how much the expected damage will vary because of variability of matrix P and

parameter . We will also investigate the statistical uncertainty of the estimation of . In fatigue reliability 

evaluation using the load-strength concept often the log-normal distribution is used, see [1, Chapter 7]. Therefore, the 

uncertainty in damage will be measured in terms of the standard deviation of the logarithmic damage, which 

corresponds to the relative uncertainty in damage (or fatigue life). 

6.1. Variability of the transition matrix P

To examine how much the expected damage will depend on the transition matrix P , three different Markov chains 

have been used to model the sequence of driving events.  

First, assume that we always go from left to left. This would be the case with the smallest possible 

damage, since all minima are equal to zero. The expected damage is RnEDE , where n denotes 

the number of turns and R  represents the standard Rayleigh random variable for the maximum force. 

Second, consider that the events change each time. In this case, 12112 pp , and we will get the 

maximum damage for this type of Markov chain. The oscillation intensity ),( vuosc  given in Eq. (6) 

can be simplified to 

vuvMP
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     (10) 

Finally, assume that left and right turns occur independently of the past with probabilities 5.0ijp ,

and Eq. (6) simplifies to (see also [10]) 
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The expected damage values for the three different cases have been summarized in Table 2. Here, we have 

considered standard Rayleigh distributions for negative and positive values and the number of events is 100n .

   Table 2. Expected damage calculated from the three different Markov chains. 

Damage Minimum Independent Maximum 

3 31005.0 31014.0 31017.0

5 31006.0 31072.0 31080.0

The two extreme cases will be used to calculate the uncertainty in damage by assuming a uniform distribution 

between the minimum and maximum values, viz. for 3

35.0
12

05.0ln17.0ln

12

lnln minmax dd
P

      (12) 

which can be interpreted as corresponding to 35% relative uncertainty in damage, as the natural logarithm is used. 
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6.2. Statistical uncertainty of parameter 

Suppose that we estimate the parameter  based on n observations, then we may ask how much the estimation 

uncertainty of parameter  impacts the damage. The estimate of parameter for a Rayleigh distribution is 

X/2ˆ and its distribution is approximately normal )
4

,( 2

n
N . Thus, the uncertainty in damage can 

be approximated using Gauss’ approximation formula, viz. 

.29.0
4

ˆlnVarˆlnVar,
n

stat
     (13) 

with an example for a short signal with 30n maneuvering events and 3 , corresponding to a typical length 

of the measurements. 

6.3. Variability of parameter 

For different measurements of maneuvering events, we have found different estimates of parameter , say 

l,...,, 21
 for l  different measurements. The uncertainty in damage due to the variability in the estimated   is 

computed as the sample standard deviation, viz. 

56.018.03lnstdlnstd         (14) 

for an example with 3  and estimated -values 6.15, 6.05, 9.40, 8.96, 7.76, 6.37, 6.72. However, the uncertainty 

 includes both the variability and the statistical uncertainty of . Thus, the pure variability can be estimated as 

46.02

,

2

var, stat
.

7. Conclusion 

A reduced load, i.e. a sequence of the most extreme forces during steering events, was introduced. A random load 

modeling the variability of the reduced load was proposed. The sequence of steering events, which is vehicle 

independent information, was modeled using a two states Markov chain. The extreme forces occurring during the 

steering events were modeled by means of independent Rayleigh distributed variables. For the model, an explicit 

formula for the expected fatigue damage was presented. The proposed random model depends only on four parameters 

which could be used to classify and compare the severity of driving environments.  

The results were validated using measured data. The slow speed maneuvering events were detected. All large 

rainflow cycles found in measured load were also counted in the reduced load. Hence the reduced load can be used to 

predict fatigue damage of steering components. The observed load spectrum did not significantly differ from load 

spectra found in the simulated loads. We conclude that the proposed random load accurately describe the variability 

of the rainflow ranges for the considered measured loads. 

A sensitivity study was conducted to see how much the expected damage depends on the parameters of the proposed 

model.  
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Abstract

In this article we propose a method to identify steering events, such as
curves and maneuvers for vehicles. We use a hidden Markov model with
multidimensional observations, to estimate the number of events. Three
signals, lateral acceleration, steering angle speed and vehicle speed are
used as observations. We demonstrate that hidden Markov models with a
combination of continuous and discrete distributions for observations can
be used to detect steering events. Further, the expected number of events
is estimated using the transition matrix of hidden states. The results from
both measured and simulated data show that the method works well and
accurately estimates the number of steering events.

Keywords: Hidden Markov models (HMMs); Laplace distribution; discrete
distribution; EM algorithm; steering events.

1 Introduction

For vehicle companies, the durability assessment of vehicle components is an
important aspect of the design process to produce a vehicle with high quality of
its components. Therefore, describing the service loading independent of vehicle
properties is appreciated at the design stage of the components. In addition, for
fatigue damage the loads need to be assessed. The load environment, the cus-
tomer usage and the vehicle dynamics affect the load distribution, Johannesson
and Speckert (2013).

One of the main sources of variation in the loads is the driver’s behavior.
A driver can affect the load by changing the speed, braking or adapting to
the curves. These behaviors are characterized as driving events. In general,
the customer behavior is unknown and needs to be estimated. To identify the
events we want to use the information available for all vehicles by means of CAN
(Controller Area Network) bus data. Since the driving events are not recorded
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in CAN data, we model them using a hidden Markov model, Cappé et al. (2005),
where the states are the driving events and the observations are CAN signals.

There are different methods for modeling driver actions and identifying driv-
ing events. For instance, Nilsson et al. (2014) have developed an on-line cycle
detection algorithm to extract detailed information from customers’ vehicles
during operation, by using only production sensors. Karlsson (2007) has de-
scribed customer usage by classifying the type of roads. This is important since
different aspects of the customer usage are relevant in order to determine the
fatigue damage in service. Such aspects are the type of roads, transport mission,
driver’s behavior and different kind of maneuvers they perform.

Hidden Markov models are probabilistic models often used in signal process-
ing for detection of patterns or events in a signal. The HMMs are the reliable
and robust methods for event recognition. The idea of using HMMs to identify
driving events is not new and it has been used in many applications. Mitrović
(2004, 2005) and Berndt and Dietmayer (2009) have constructed one HMM for
each type of driving event such as left and right curves, left, right and straight
on in roundabouts. In our study, we have used a single HMM for describing all
driving events.

In Maghsood and Johannesson (2013, 2016), a discrete HMM was used to
detect steering events, either curves or maneuvering, based on vehicle logging
data. The discretization of the observation process was obtained by using pre-
defined thresholds, and then the probability distribution of observation symbols
are considered in each hidden state. Two separate HMMs were constructed,
one for detection of curves based on lateral acceleration, and another one for
detection of maneuvers (steering activities at low speed) based on the steering
angle speed.

It is also possible to use a continuous HMM for detecting steering events,
as described in Maghsood et al. (2015). Here, also two separate HMMs for
detection of curves and maneuvers are needed. However, there are two main
advantages of using continuous HMM over a discrete version. Firstly, there is
no need to choose the thresholding levels. Secondly, the continuous model can
easily be extended to incorporate multivariate sources of information, which is
not as easy for the discrete threshold approach.

In this study, we want to investigate the usefulness of HMMs with multidi-
mensional observations to identify both the curves and the maneuvers in a single
HMM. We use an HMM with a combination of continuous Laplace distributions
and discrete distributions for observations. The multivariate observation con-
sists of the lateral acceleration, the steering angle speed and the discretized
vehicle speed, all calculated from CAN data. Both simulated and measured
signals are used as examples to identify the steering events and validate the
model.

The paper is organized as follows: In the second section, the HMM and the
estimation method are presented. In the third section, the HMMs for steering
events are introduced while the data is described in Section four. The examples
are presented in Section five. The final section contains the conclusions of the
paper.
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2 Model description and estimation

We investigate the usefulness of HMMs for finding different driving events. Us-
ing a combination of continuous and discrete distributions for multidimensional
observations in HMM is of interest. We start with a short description of HMMs
and the multivariate distribution of observations. Then, we define the general-
ized asymmetric Laplace distribution (GAL) and the discrete distribution used
to detect the sequence of steering events. Further, a method for estimating
HMM parameters is presented in Section 2.3, while estimating the number of
events is given in Section 2.4.

2.1 Hidden Markov models

Hidden Markov model is a bivariate Markov process {Zt, Yt}∞t=0 where the
underlying process Zt is an unobservable Markov chain and is observed only
through the observation sequence Yt, see Cappé et al. (2005). The observation
Yt given Zt is a sequence of independent random variables and the conditional
distribution of Yt depends only on Zt.

In this article, the sequence of hidden states Zt takes values on a discrete
space {1, 2, . . . , N}. The HMM is characterized by two sets of parameters. The
first set is the transition matrix Q = (q(i, j)) of Markov chain Zt, where the
transition probabilities q(i, j) are given by:

q(i, j) = P (Zt+1 = j|Zt = i), i, j = 1, 2, ..., N. (1)

The second set is the parameters, θ, of the conditional distribution of Yt given
Zt:

gθ(i, yt) = fYt(yt|Zt = i;θ), i = 1, 2, ..., N. (2)

The observation sequence Yt can be a univariate or multivariate variable.
In an HMM, the state where the hidden process will start is modeled by the

initial state probabilities π = (πi), where πi is denoted by:

πi = P (Z0 = i), i = 1, 2, ..., N (3)

and
∑N
i=1 πi = 1.

2.2 The distribution of observations

In this article, we propose using a combination of continuous and discrete dis-
tributions for observations. To estimate the parameters we use the maximum
likelihood method. Therefore, we need to find the conditional distribution of Yt
given Zt. Suppose that the observation Yt = (Yt,1, ..., Yt,d) is a multivariate time
series with d = d1 +d2 dimensions. The first d1 random variables (Yt,1, ..., Yt,d1)
are continuous with their observed values (yt,1, ..., yt,d1), and have the joint prob-
ability density function fYt,1,...,Yt,d1 (yt,1, ..., yt,d1 |Zt = i;θ1) within each state.
We assume that the last d2 observations (Yt,d1+1, ..., Yt,d2) are discrete variables
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and have the joint probability mass function P (Yt,d1+1 = yt,d1+1, ..., Yt,d2 =
yt,d2 |Zt = i,θ2) in each state.

For the sake of simplicity we assume that the continuous and discrete vari-
ables are conditionally independent given the hidden state. Then, the frequency
function of Yt given Zt for a set of parameters θ = (θ1,θ2) is as follows:

gθ(i,yt) = fYt,1,...,Yt,d1 (yt,1, ..., yt,d1 |Zt = i;θ1)

P (Yt,d1+1 = yt,d1+1, ..., Yt,d2 = yt,d2 |Zt = i;θ2) (4)

where yt = (yt,1, ..., yt,d) is the observed value of Yt and i = 1, 2, ..., N .
Note that any continuous or discrete distributions can be used in Eq. (4). In

our case study, on-board logging signals are used as observations Yt and some of
them are discretized into the predefined levels. We model the continuous obser-
vations by Laplace distributions and use a discrete distribution for discretized
signals.

2.2.1 Multivariate generalized Laplace distribution

The multivariate generalized asymmetric Laplace distribution (GAL) for a d-
dimensional random vector Y is denoted by GAL(δ,µ, ν,Σ), where δ is the
location vector, µ is the shift vector, ν > 0 is the shape parameter and Σ is
the scaling matrix. The probability density function (pdf) of a GAL(δ,µ, ν,Σ)
distribution is

fY (y) =
1

Γ(1/ν)
√

2π

(√
(y − δ)TΣ−1(y − δ)

c2

) 1/ν−d/2
2

e(y−δ)Σ−1µ

K1/ν−d/2

(
c2

√
(y − δ)TΣ−1(y − δ)

)
,

where d is the dimension of Y , c2 =
√

2 + µTΣ−1µ and K1/ν−d/2(·) is the
modified Bessel function of the second kind. The normal mean-variance mixture
representation can give an intuitive feel of the distribution. This is a random
variable Y having GAL distribution, and the following equality holds:

Y
d
= δ + Γµ+

√
ΓΣ1/2Z,

where Γ is a Gamma distributed random variable with shape 1/ν and scale one,
and Z is a vector of d independent standard normal random variable. For more
details see Barndorff-Nielsen et al. (1982).

2.2.2 Discrete distribution

Assume that Yt is a univariate discrete random variable and that it has the
possible values {1, 2, ...,M}. The probability distribution of observation symbols
in each state is given by the emission matrix, B = {bi,j}, where

bi,j = P (Yt = j|Zt = i), i = 1, 2, ..., N, j = 1, 2, ...,M

where
∑M
j=1 bi,j = 1.
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2.3 Estimation of HMM parameters

In our study, we mainly focus on estimating the transition matrix Q of HMM
based on the observation sequences. The reason for this is that the conditional
distribution of observations given a certain hidden state, describes the property
of driving events which is constant over time and can be assumed to be known.
However, the frequency and duration of events, which is described by the tran-
sition probabilities, are likely to depend on the type of road. Therefore, it is
relevant to update the transition matrix for a new signal to find the hidden
states.

We use the EM algorithm for parameter estimation. The EM algorithm is a
common method for estimating the parameters in HMMs. It is an optimization
algorithm to find the parameters that maximize the likelihood. The algorithm
is both robust and is often easy to implement.

2.3.1 EM algorithm

The expectation-maximization (EM) algorithm, introduced by Dempster et al.
(1977), is an iterative algorithm for finding the parameters that maximize the
likelihood function. The EM algorithm can be used to estimate the HMM
parameters. Let Θ = (Q,θ) denote the set of parameters in an HMM, where
Q = (q(i, j)) is the transition matrix of Markov chain Zt and θ denotes the
parameters of the conditional distribution of Yt given Zt. Here, the sequence of
hidden states Zt takes values on a discrete space {1, 2, . . . , N}. We assume that
y0, ..., yT are observed, and z0, ..., zT are referred as missing data. The complete
data likelihood is given by:

p(y0, ..., yT , z0, ..., zT ; Θ) = πz0gθ(z0, y0)q(z0, z1)gθ(z1, y1)...q(zT−1, zT )gθ(zT , yT ).
(5)

The likelihood of interest is the joint probability density function of Y0, ..., YT ,
given by:

L(Θ) = p(y0, ..., yT ; Θ) =

N∑
z0=1

...

N∑
zT=1

p(y0, ..., yT , z0, ..., zT ; Θ). (6)

Computing the sums in the likelihood function L(Θ) is not numerically feasible.
Thus, direct maximization of the likelihood is not computationally tractable.
The EM algorithm provides a method for estimating the HMM parameters
by using the expected value of the complete data log-likelihood given known
observations and current parameters. The algorithm starts with an initial guess
of the parameters Θ(0), and then iteratively updates the current parameters by
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maximizing:

τ(Θ,Θ(n)) = E
[
log p(Y0, ..., YT , Z0, ..., ZT ; Θ)

∣∣y0, ..., yT ; Θ(n)
]

= E
[
log πz0

∣∣y0, ..., yT ; Θ(n)
]

+

T−1∑
l=0

E
[
log q(zl, zl+1)

∣∣y0, ..., yT ; Θ(n)
]

+

T∑
l=0

E
[
log gθ(zl, yl)

∣∣y0, ..., yT ; Θ(n)
]
,

for n = 0, 1, 2, ... until convergence. Thus, the nth iteration of the EM algorithm
consists of the following two steps:

• The E-step, where the expected complete log-likelihood τ
(
Θ,Θ(n)

)
is com-

puted,

• The M-step, where the maximum likelihood estimate of the parameter
Θ(n+1) = argmax

Θ
τ
(
Θ,Θ(n)

)
is computed.

For our specific model, the parameter of interest is Q = (q(i, j)). In this
case, the E-step consists of computing P (Zt−1 = i, Zt = j|y0, ..., yT ;Q(n)),
which is the conditional probability of being at state i at time t− 1 and state j
at time t when the observation sequence and the parameters are given, and the
M-step uses the conditional probability to compute the transition probabilities
as follows:

q(n+1)(i, j) =
”Expected number of transitions from state i to j”

”Expected number of visits to state i”

=

∑T−1
l=0 P (Zl = i, Zl+1 = j|y0, ..., yt;Q

(n))∑T
l=0 P (Zl = i|y0, ..., yt;Q(n))

.

2.4 Estimating the number of events

Recall that the hidden Markov chain Zt represents the steering states. Let Q̂
denote the estimation of transition matrix Q computed by EM algorithm. We
consider two possible ways to estimate the number of steering events:

1. The sequence of hidden states is reconstructed using Q̂ and the Viterbi
algorithm, Viterbi (1967), and the steering events are counted.

2. The expected number of steering events are computed based on the esti-
mated transition matrix Q̂.
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2.4.1 Detecting the driving events

The Viterbi algorithm, see Viterbi (1967), is an important algorithm in HMMs
and is used to find the most probable sequence of hidden states given the obser-
vation sequences. Suppose that we have an observation sequence y0, y1, ..., yT
and would like to find driving events for this observation. It means that we
should find a sequence of hidden states which maximizes the probability of ob-
serving this specified observation. The Viterbi algorithm determines the most
likely sequence ẑt of hidden states which maximizes the conditional probability
of the observation sequence for given parameters Θ:

(ẑ0, ..., ẑT ) = arg max
z0,...,zT

p(y0, ..., yT |z0, ..., zT ; Θ).

By using the Viterbi algorithm, we reconstruct the sequence of hidden states
using the estimated parameters Θ = (Q̂,θ) where Q̂ is the estimated transition
matrix. In order to count the number of events, we count the number of times
that ẑt switches its values.

2.4.2 Expected number of events

Instead of reconstructing the sequence of driving events, it is possible to compute
the expected number of events using the transition matrix. Suppose that the
Markov chain {Zt}∞t=0 has transition matrix Q. The expected number of ith

event for {Zt}Tt=0 is equivalent to the number of times that transitions j → i
for all j 6= i occur. The intensity of visiting state i is ξi(t) =

∑
j 6=i I(Zt−1 =

j, Zt = i), for t = 1, 2, ..., T . In addition, one should consider the state at time
zero, Z0, which can also be i. Therefore, the expected number of ith event is:

ηi = E[I(Z0 = i)] + E[

T∑
t=1

ξi(t)] = πi + T
∑
j 6=i

πjq(j, i), i, j = 1, 2, ..., N (7)

where π = (π1, π2, ..., πN ) is the stationary distribution of Q computed by
solving equation (Q− I)π = 0.

The expected number of events is estimated by replacing Q by Q̂.

3 HMM for steering events

The steering events are important since they generate high forces in the steering
components. We divide the steering events into curves and maneuvers. The
curve events give rise to lateral forces through lateral acceleration and occur
when driving at speeds higher than about 10 km/h, while the maneuvering
events generate high forces due to steering at low speeds, typically lower than
10 km/h, e.g. driving in or out of a parking lot, standing still but turning steering
wheel.

We use a single HMM to detect both the curves and maneuvers. In order to
identify the events, we consider six states for the hidden Z-process as follows:
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right turn (1 = ”RT”), straight forward for turns (2 = ”SFT”) and left turn
(3 = ”LT”), steering right (4 = ”SR”), straight forward for maneuvers (5 =
”SFM”) and steering left (6 = ”SL”). Three signals, lateral acceleration (Yt,1),
steering angle speed (Yt,2) and vehicle speed (Yt,3) are used as observation in
the HMM. We assume that Yt,1 and Yt,2 are continuous observations and we
discretized Yt,3 into the three levels:

• 1 = {0 km/h ≤ ”speed” < 1 km/h},

• 2 = {1 km/h ≤ ”speed” < 10 km/h},

• 3 = {”speed” ≥ 10 km/h}.

We use a combination of Laplace and discrete distributions for observations
and construct an HMM to identify the steering events.

4 Vehicle logging data

In this section we illustrate the on-board logging signals available on trucks.
This information is available for all vehicles and can be obtained from CAN
(Controller Area Network) bus data. There are more than 80 signals from CAN
bus data that can be used to identify the driving events. The signals we have
used from CAN-data are named:

• Steering wheel angles,

• Vehicle speed,

• Yaw rate.

The steering wheel is the wheel the driver holds in his or her hand while
driving and the angle is defined as the angle deviation from driving straight
ahead.

The yaw rate contains information about steering events only for a non-zero
speed. By steering, the entire vehicle will shift direction and this will happen
at a certain angular velocity, which is the yaw rate.

We have used the yaw rate and speed to get an accurate lateral acceleration
signal, which is computed by the following formula:

”lateral acceleration” = ”speed” · ”yaw rate”.

The lateral force is proportional to the lateral acceleration in turning events.
For most components these loads are not as damaging as the vertical loads, but
they have a large impact on steering components, Karlsson (2006).
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5 Example

Recall that the aim of this study is to estimate the number of events in measure-
ments. We use a single HMM to identify both the curves and the maneuvers.
The number of curves and maneuvers are estimated by two different methods.
In the first approach, the estimated transition matrix and the Viterbi algorithm
are used to reconstruct the most likely sequence ẑt of steering states and then
the number of events is counted. In the second approach, the expected number
of events are estimated using the estimated transition matrix and Eq. (7).

A measured data set is used to demonstrate the proposed algorithm. In a
second study, a number of simulated data sets are used to check how well the
estimation algorithm works. We especially assess the statistical properties of
the estimators, such as bias and variance.

5.1 Measured data

As mentioned above, a real data set is used to demonstrate the algorithm. We
use the dedicated field measurements from a Volvo Truck as our data set. We
divide the data into two equal portions as our training and test sets. We use the
training set to estimate the parameters of the model and the test set to validate
the model.

In our case study, the training set contains all history about the steering
events such as the start and stop points. By using this information of the training
set, the parameter θ of the conditional distribution of observation given the
hidden state is found through maximum likelihood estimation.

We use an HMM to re-estimate the transition matrix Q and to detect the
steering events from the test set. The estimated parameters from the training
set are used for the conditional distribution of observations. This is because
the conditional distribution of Yt given a certain hidden state Zt describes the
property of driving events which is assumed to be vehicle specific data that can
be estimated under well-defined conditions on the proving ground. However, the
differences between types of roads can affect the transition probabilities and the
duration of the events. Therefore, it could be relevant to update the transition
matrix Q of HMM based on a new observation sequence.

5.1.1 Training set

To create training data, the steering events are detected manually by looking at
video recordings from the truck cabin. Then, the start and stop points of each
event are extracted to create the hidden Z-process. As mentioned above, three
signals: lateral acceleration, steering angle speed and the discretized speed are
the observations in our HMM. Figure 1 shows the training data which contain
the measured lateral acceleration, steering wheel angles, vehicle speed and dis-
cretized vehicle seed with the corresponding manually detected steering states.
This training set has been used to estimate all parameters of the model.
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Figure 1: The training data contain the measured lateral acceleration (Y1),
steering angle speed (Y2) and vehicle speed (Y3) with the corresponding manu-
ally detected steering states.

We have two choices for modeling observations Y1 and Y2 with the Laplace
distribution. We can either consider that Y1 and Y2 are dependent, which means
that they have the same shape parameter ν, or we can assume that they are
independent but with different ν. Both cases have been tested. It was found that
having separate ν for Y1 and Y2 gives better fit to data and also better estimation
of the transition matrix. Thus, we assume that Y1 and Y2 are independent
variables, each having a Laplace distribution. The histograms and the fitted
distributions for lateral acceleration and steering angle speed for each state are
shown in Figure 2.
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Figure 2: The histogram of observation and the fitted Laplace distribution for
curves and maneuvers.

The parameter of the Laplace distributions given the hidden state, is found
through maximum likelihood estimation. The estimated parameters for steering
states are given in Table 1.
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Table 1: The estimated parameters of Laplace distributions fitted for lateral
acceleration (Y1) and steering angle speed (Y2).

State(i) 1=”RT” 2=”SFT” 3=”LT” 4=”SR” 5=”SFM” 6=”SL”

δi 0.04 -0.04 -0.04 3.02× 10−6 −5.59× 10−6 −3.02× 10−6

Y1 µi -0.26 −8.21× 10−4 0.26 -0.003 0.003 0.003
νi 0.31 1.73 0.31 6.17 7.56 6.17
σ2
i 0.07 0.13 0.07 0.04 0.04 0.04

δi -0.20 1.36× 10−5 0.20 7.63× 10−4 −3.81× 10−5 −7.63× 10−4

Y2 µi -0.01 0.01 0.01 -3.27 0.02 3.27
νi 1.78 3.33 1.78 1.07 5.75 1.07
σ2
i 7.54 0.71 7.54 0.08 23.73 0.08

The estimated probabilities of discretized speed (Y3) in each state is given
by the emission matrix B:

B =



1 2 3

RT 0 0.13 0.87
SFT 0 0 1
LT 0 0.21 0.79
SR 0.17 0.83 0
SFM 0.44 0.56 0
SL 0.22 0.78 0

.

5.1.2 Test set

Here, we evaluate the proposed method using the test set. We use the esti-
mated parameters for conditional distribution of observations from the training
set, and estimate the transition matrix Q based on the test set for detecting
the events in the test set. The EM algorithm is used to estimate the transition
matrix Q, and the estimated matrix is:

Q̂ =



RT SFT LT SR SFM SL

RT 0.9274 0.0574 0.0108 0.0005 0.0006 0.0032
SFT 0.0082 0.9834 0.0075 0.0001 0.0003 0.0004
LT 0.0117 0.0661 0.9190 0.0032 0.0000 0.0000
SR 0.0131 0.0100 0.0000 0.8369 0.0198 0.1202
SFM 0.0000 0.0037 0.0002 0.0231 0.9501 0.0228
SL 0.0008 0.0000 0.0147 0.1023 0.0441 0.8380

.
By using the estimated transition matrix and Viterbi algorithm, we recon-

struct the most likely sequence ẑt of steering states to find the frequency of
events. The estimated number of events from the Viterbi algorithm are given
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by κ̂i. Further, we estimate the expected number of events, η̂i, calculated from
the estimated transition matrix using Eq. (7). The results are presented in
Table 2.

Table 2: The estimated number of events κ̂i from the Viterbi algorithm and the
expected number of events η̂i using estimated transition matrix Q̂.

Event(i) 1=”RT” 2=”SFT” 3=”LT” 4=”SR” 5=”SFM” 6=”SL”
κ̂i 137 220 137 96 37 101
η̂i 150 245 143 95 46 104

One can conclude that the expected number of right and left turns estimated
from the transition matrix Q̂ is larger than the number of turns found by the
Viterbi algorithm. However there is no significant difference between the number
of maneuvers estimated from both methods. Figure 3 shows the testing data
and the corresponding detected states based on HMM and Viterbi algorithm.
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Figure 3: The testing data contain the measured lateral acceleration (Y1), steer-
ing angle speed (Y2) and vehicle speed (Y3) with the corresponding steering
states detected by HMM.
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5.2 Simulated data

The goal of the simulation study is to investigate the properties of the estimates
of the number of events. We use two approaches to estimate the number of
steering events. In the first approach, we use the Viterbi algorithm to count the
number of events. In the second approach, we estimate the expected number of
events using the estimated transition matrix Q̂. We investigate the properties
of these two different estimates through a simulation study. In order to assess
the performance of the algorithm, we estimate four different errors, which are
defined in the following table.

κi Observed number of ith event for i = 1, 2, ..., 6
κ̂i Estimated number of ith event from the Viterbi algorithm
ηi Expected number of ith event using true transition matrix Q

η̂i Estimate of ηi using estimated transition matrix Q̂
e1,i Error1 = κ̂i − κi
ε1,i Error2 = κ̂i − ηi
e2,i Error3 = η̂i − κi
ε2,i Error4 = η̂i − ηi

We first generate the sequence of steering states by using a Markov chain.
We construct an HMM based on six steering states with the transition matrix:

Q =



RT SFT LT SR SFM SL

RT 0.90 0.09 0.005 0 0.005 0
SFT 0.0225 0.95 0.0225 0 0.005 0
LT 0.005 0.09 0.90 0 0.005 0
SR 0 0.005 0 0.90 0.09 0.005
SFM 0 0.005 0 0.0225 0.95 0.0225
SL 0 0.005 0 0.005 0.09 0.90

.
Three signals: lateral acceleration (Yt,1), steering angle speed (Yt,2) and vehicle
speed (Yt,3) are simulated as observation sequences. We assume that Yt,1 and
Yt,2 are independent random variables with a Laplace distribution. We simulate
the lateral acceleration and steering angle speed where the parameters are given
in Table 3.
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Table 3: The parameters of Laplace distributions for lateral acceleration (Y1)
and steering angle speed (Y2).

State(i) 1=”RT” 2=”SFT” 3=”LT” 4=”SR” 5=”SFM” 6=”SL”

δi -1 0 1 0 0 0
Y1 µi -0.5 0 0.5 -0.003 0.003 0.003

νi 0.1 2 0.1 5 8 5
σ2
i 0.2 1 0.2 0.04 0.04 0.04

δi -0.4 0 0.4 -0.003 0 0.003
Y2 µi -0.01 0.01 0.01 -5 0.004 5

νi 2 3 2 1 5 1
σ2
i 7 0.6 7 0.2 10 0.2

The vehicle speed is considered a discrete observation with three levels
{1, 2, 3}, as described on page 8. We simulate a sequence of discretized speed
(Yt,3) by using the following emission matrix:

B =



1 2 3

RT 0 0.2 0.8
SFT 0 0.2 0.8
LT 0 0.2 0.8
SR 0.2 0.8 0
SFM 0.2 0.8 0
SL 0.2 0.8 0

.
The simulated signals represent a journey on a city road over 104 seconds

(≈ 3 hours), where the sampling period is 1/2 seconds. We perform 1000 simu-
lations of city road to estimate the number of steering events. Since we consider
the parameters corresponding to the conditional distribution of observations
given a hidden state as fixed, we use the EM algorithm to estimate the transition
matrix given three simulated signals as observation process Yt = (Yt,1, Yt,2, Yt,3).

For each simulation, the number of events has been estimated based on two
approaches. In order to investigate the properties of the estimators, we compute
four different errors. The first two errors e1,i and ε1,i correspond to the first
approach, while e2,i and ε2,i are computed based on the second approach. Errors
e1,i and ε1,i represent how much the estimated number of events from the Viterbi
algorithm (κ̂i) differs from the observed number of events (κi) and the expected
number of events (ηi), respectively. Error e2,i is the difference between the
estimated expected number of events (η̂i) and the observed number of events,
while ε2,i indicates the difference between the estimated and true values of the
expected number of events. We compute the mean and the standard deviation
of errors over 1000 simulations. The 95% confidence intervals are indicated in
the parenthesis. The results are presented in Table 4.
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Table 4: The estimated number of steering events. The mean and the standard
deviation of errors with the 95% confidence intervals.

Event(i) 1=”RT” 2=”SFT” 3=”LT” 4=”SR” 5=”SFM” 6=”SL”

mean(κi) 81 172 82 80 168 79

std(κi) 13.2 22.9 13.4 13.6 23.1 14

ηi 80 170 80 80 170 80

mean(κ̂i) 84 178 83 76 156 76

std(κ̂i) 13.6 23.2 13.5 13.5 22.2 13.8

mean(η̂i) 81 172 82 83 174 82

std(η̂i) 13.4 23.1 13.5 15.1 25.2 15.5

mean(e1,i) 2.8 (±0.1) 5.8 (±0.2) 0.9 (±0.1) -3.2 (±0.3) -11.8 (±0.5) -3.2 (±0.4)

std(e1,i) 2.4 3.3 1.8 5.5 8.1 5.6

mean(ε1,i) 3.7 (±0.9) 7.9 (±1.5) 2.3 (±0.9) -4 (±0.9) -14 (±1.4) -4.3 (±0.9)

std(ε1,i) 13.6 23.2 13.5 13.6 22.2 13.8

mean(e2,i) 0.01 (±0.1) 0.01 (±0.2) 0.02 (±0.1) 2.9 (±0.3) 6.3 (±0.5) 3 (±0.3)

std(e2,i) 1.8 3 1.8 5.3 7.9 5.4

mean(ε2,i) 0.9 (±0.8) 2.1 (±1.5) 1.3 (±0.8) 2.1 (±0.9) 4.1 (±1.6) 1.8 (±1.0)

std(ε2,i) 13.4 23.1 13.5 15.1 25.2 15.5

corr(κ̂i, κi) 0.98 0.99 0.99 0.92 0.94 0.92

corr(η̂i, κi) 0.99 0.99 0.99 0.94 0.95 0.94

Approach one with errors e1,i and ε1,i gives bias for estimation of κi and ηi,
respectively. As can be seen from the 95% confidence intervals, we have positive
bias for turns and negative bias for maneuvers based on the first approach. Ac-
cording to the second approach and error e2,i, there is only bias for maneuvers,
while error ε2,i indicates a small bias.

The standard deviations of the errors calculated from both approaches are
almost the same, while the bias of the second approach is smaller than the first
one. Therefore, the second method should be preferred to estimate the number
of events.

It can also be seen that κi is highly correlated with κ̂i and η̂i, which is
expected since the standard deviations of e1,i and e2,i are small.

6 Conclusion

A method is proposed to identify steering events (curves and maneuvers), using
an HMM with multivariate observation sequences. We considered six driving
states: right turn (RT), straight forward for turns (SFT), left turn (LT), steering
right (SR), straight forward for maneuvers (SFM) and steering left (SL), to
construct the HMM. Three signals: lateral acceleration, steering angle speed
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and speed are used as observations. It is shown that hidden Markov models with
a combination of continuous and discrete distributions for observations can be
used to find the steering events. Both simulated and measured signals are used
to exemplify the identification of steering events. Two different approaches
have been used to estimate the number of events. In the first approach, the
number of events have been counted based on the Viterbi algorithm. In the
second approach, we estimate the expected number of events from the transition
matrix estimated by the EM algorithm. The bias and variance of estimations
are investigated. The standard deviations of the errors computed from both
approaches are almost the same, while the bias of the second approach is smaller
than the first one. Therefore, one can conclude that the second approach, using
the expected number of events, can accurately estimate the number of steering
events and outperform the Viterbi algorithm.

The proposed model can be extended for detecting more steering events such
as static steering or slow reverse steering. This can be done by increasing the
number of driving states and also the number of observation sequences in the
HMM. For instance, to distinguish between forward and reverse maneuvers, we
need to use a current gear signal as an extra observation.
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Abstract

Driving events, such as maneuvers at slow speed and turns, are impor-
tant for durability assessments of vehicle components. By counting the
number of driving events, one can estimate the fatigue damage caused
by the same kind of events. Through knowledge of the distribution of
driving events for a group of customers, the vehicles producers can tai-
lor the design, of vehicles, for the group. In this article, we propose an
algorithm that can be applied on-board a vehicle to on-line estimate the
expected number of driving events occurring, and thus be used to estimate
the distribution of driving events for a certain group of customers. Since
the driving events are not observed directly, the algorithm uses a hidden
Markov model to extract the events. The parameters of the HMM are
estimated using an on-line EM algorithm, with a fixed forgetting factor
to address chaining driving conditions.

Keywords: Hidden Markov models; EM algorithm; on-line EM algorithm;
driving events; expected damage; fatigue damage.

1 Introduction

When designing vehicles components it is important to know the distributions
of loads expected to act on them. The life time of a component in a vehicle–
such as control arms, ball joints, etc.– is determined by its strength and the
loads acting on it. Where the effect of a given force acting on a component is
well known, the distributions of loads, and hence forces, are more random. This
is because the distribution of the loads depends on the driving environment,
driver’s behavior, usage of the vehicle, and other things. For a more detailed
description of loads acting on vehicles, see Johannesson and Speckert (2013).

Although it is not financially possible to design a vehicle for specific cus-
tomer, it is important to tailor the design for groups of customers, depending
on, for instance, geographical regions and usage. Obviously, components weakly
designed for the specific environments leads to increased costs due to call-backs

1



and badwill for the company, while too heavily designed components give in-
creased material cost and unnecessarily heavy vehicles.

Traditionally, one has used a specially equipped test vehicle to study the
distributions of customer loads. This gives very precise measurements, but with
disadvantage of a statistically small sample size for the studied group. In addi-
tion, it is a very expensive way of acquiring data. However, all modern vehicles
are equipped with computers measuring many signals, known as Controller Area
Network (CAN) bus data, where the signal is for instance speed and lateral ac-
celeration. The goal of this article is to develop a statistical algorithm that uses
these signals, to extract information about the driving events for the specific
vehicle. This data can then be collected from several vehicles to generate a load
distribution for groups of customers.

The desired algorithm needs several key properties to be practically useful:
First, it obviously needs to be able to extract the driving events from the CAN
data. Second, since the data will be extracted over long periods of time the
computational cost of estimation of the driving events needs to be low. It
is also desirable that the method does not require the storage of all the data.
Finally, the algorithm should allow for changing frequency of driving events over
time, since the frequency of driving events changes depending on the driving
environment such as highway driving or city driving.

To address the first property, our algorithm uses a hidden Markov Model
(HMM) to extract the driving events from the CAN data. More specifically
each state in the HMM represents a driving state where we define a driving
event as a sequence of consecutive driving states. The CAN data for a given
driving state is assumed to follow a generalized Laplace (GAL) distribution.
Laplace distributions are well known methods to describe responses measured
on driving vehicles, see Bogsjö et al. (2012); Kvanström et al. (2013). The
idea of using HMMs to identify driving events has previously been used in for
example Maghsood and Johannesson (2013, 2016), Mitrović (2004, 2005) and
Berndt and Dietmayer (2009).

For the HMM we divide the parameter into two sets: the transition matrix,
which is vehicle type independent, depending rather on the driving environment,
the driver’s behavior etc. The parameter of the GAL distribution is vehicle type
specific, and can thus be found in laboratory tests or in proving grounds. Thus
the second property, in the case of an HMM, is equivalent to efficiently esti-
mating the transition matrix of driving states. In previous articles, the EM
algorithm has been used successfully to estimate the transition matrix, Magh-
sood et al. (2015); however an iteration of the algorithm has computational
complexity O(n) (where n is the number of observation) and is thus not prac-
tically feasible. Here, we instead propose using the on-line EM algorithm from
Cappé (2011) to estimate the matrix. This gives the desired computational
efficiency, since one iteration of the algorithm has a computational cost of O(1).

The final property is addressed by using a fixed forgetting factor in the on-
line EM algorithm. Cappé (2011) proposes a diminishing forgetting factor to
ensure that the EM algorithm converges to a stationary point. However, this is
not the goal here and we do not want the algorithm to converge to a stationary
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point but rather be an adaptive algorithm. The usage of forgetting factors
is a well-studied area in automatic control, time series analysis and vehicle
engineering, see Arvastson et al. (2000); Lennart and Söderström (1983); Vahidi
et al. (2005).

Further, the algorithm also calculates on-line the expected damage for a
given component. This could be useful for the specific vehicle, on which the
algorithm is applied, by using the expected damage to tailor service times to
specific vehicle and components.

The paper is organized as follows: In the second section, the HMM and the
proposed on-line algorithm are presented. In the third section, the method for
estimating the fatigue damage is proposed. In the forth section, the algorithm
is applied to simulated data to verify its performance, and it is also evaluated
on real data, CAN data from a Volvo truck. The final section contains the
conclusions of the paper.

2 Hidden Markov models

Hidden Markov models are statistical models often used in signal processing,
such as speech recognition and modeling the financial time series, see for instance
Cappé et al. (2005) and Frühwirth-Schnatter (2006). An HMM is a bivariate
Markov process {Zt, Yt}∞t=0 where the underlying process Zt is an unobservable
Markov chain and is observed only through the Yt. The observation sequence
Yt given Zt is a sequence of independent random variables and the conditional
distribution of Yt depends only on Zt.

In this article, all HMMs are such that Zt takes values on a discrete space
{1, 2, . . . ,m}, and the HMM is determined by two sets of parameters. The first
set is the transition probabilities of Markov chain Zt:

q(i, j) = P (Zt+1 = j|Zt = i), i, j = 1, 2, ...,m. (1)

The second set is the parameter vector, θ, of the conditional distribution of Yt
given Zt:

gθ(i, yt) = fYt(yt|Zt = i;θ), i = 1, 2, ...,m, yt ∈ R. (2)

Here, we denote the set of parameters by Θ = (Q,θ) where Q = (q(i, j)) for
i, j = 1, 2, ...,m.

In an HMM, the state where the hidden process will start is modeled by the
initial state probabilities π = (πi), where πi is denoted by:

πi = P (Z0 = i), i = 1, 2, ...,m

with
∑m
i=1 πi = 1.

2.1 Parameter estimation

For the parameter estimation in this article we use the EM (expectation maxi-
mization) algorithm, which is described below. The principle aim is to estimate
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the transition matrix Q based on an observation sequence. For this, we use an
on-line EM algorithm, derived in Cappé (2011). To introduce the algorithm we
first describe the EM algorithm and then describe the modification needed for
on-line usage of the algorithm.

In our study, the parameter θ is not estimated recursively, but rather found
through maximum likelihood estimation on a training set. This is because the
conditional distribution of Yt given Zt in our case study represents the vehi-
cle specific data which can be estimated under well-defined conditions on the
proving ground.

2.2 The EM algorithm

Here, we present the EM algorithm following Cappé (2011). The EM algo-
rithm is a common method for estimating the parameters in HMMs. It is an
optimization algorithm to find the parameters that maximize the likelihood.
The algorithm is both robust – it does not diverge easily– and is often easy to
implementation.

The EM algorithm is an iterative procedure. If the distribution of complete-
data (Zt, Yt) given Zt−1, p(zt, yt|zt−1), belongs to an exponential family, then
the nth iteration consists of the two following steps:

• The E-step, where the conditional expectation of the complete-data suffi-
cient statistics, s(Zt−1, Zt, Yt), given the observation sequence y0, y1, ..., yt
and Θ(n), is computed,

S
(n+1)
t =

1

t
E

[
t∑
l=1

s(Zl−1, Zl, Yl)

∣∣∣∣y0, ..., yt; Θ(n)

]
, (3)

• The M-step, where the new parameter value Θ(n+1) is calculated using

S
(n+1)
t , which can be formulated as Θ(n+1) = f(S

(n+1)
t ).

The sequence Θ(n) converges to a stationary point of the likelihood function,
for more details see Cappé (2011).

For our specific model, where the parameter of interest is Q = (q(i, j)),
the sufficient statistics will be I(Zt−1 = i, Zt = j) where I(·, ·) is the indicator
function. Then, the E-step is:

S
(n+1)
t (i, j) =

1

t
E

[
t∑
l=1

I(Zl−1 = i, Zl = j)

∣∣∣∣y0, ..., yt; Θ(n)

]
. (4)

Thus St(i, j) is the expected number of transitions from state i to state j given
y0, ..., yt and Θ. For Q = (q(i, j)), the M-step is given by:

q(n+1)(i, j) =
S

(n+1)
t (i, j)∑m

j=1 S
(n+1)
t (i, j)

. (5)
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2.2.1 Recursive formulation of the E-step

Zeitouni and Dembo (1988) noted that the conditional expectation of the complete-
data sufficient statistics St can be computed recursively. To see this, define:

φt(k) = P (Zt = k|y0, ..., yt; Θ), (6)

ρt(i, j, k) =
1

t
E

[
t∑
l=1

I(Zl−1 = i, Zl = j)

∣∣∣∣y0, ..., yt, Zt = k; Θ

]
, (7)

then St(i, j) can be written as St(i, j) =
∑m
k=1 φt(k)ρt(i, j, k).

Note that (φt)k = φt(k) is an N -dimensional (row) vector. For a vector a, let
D(a) be a diagonal matrix where D(a)kk = ak. The recursive implementation
of the EM algorithm, using the observation sequence y0, y1, ..., yT , is initialized
with

φ0 =
πD(gθ(k, y0))

(πD(gθ(k, y0)))1′ , and ρ0(i, j, k) = 0,

for all 1 ≤ i, j, k ≤ m. Let gθ(yt) = (gθ(1, yt), gθ(2, yt), ..., gθ(m, yt)) and 1 =
(1, 1, ..., 1). Then, for nth iteration and t ≥ 1, the components are updated as
follows:

φt+1 =
1(D(φt)Q

(n)D(gθ(yt)))

1(D(φt)Q(n)D(gθ(yt)))1′ , (8)

ρt+1(i, j, k) = γt+1I(j − k)rt+1(i|j) + (1− γt+1)

m∑
k′=1

ρt(i, j, k
′)rt+1(k′|k),(9)

where rt+1 = D(φt./1(D(φt)Q
(n)))Q(n) and ./ represents the element-wise

division of two matrices. The forgetting factor, γt, equals 1/t.

Note that in nth iteration of EM algorithm, all elements in φ1, φ2, ..., φt and
ρ1, ρ2, ..., ρt depend on Q(n). Thus, for updating Q in (n + 1)th iteration, all
elements of the two quantities need to be recalculated. Therefore one needs to
store the entire observation vector to use the EM algorithm.

2.3 On-line estimation of HMM parameters

As we will see soon, the on-line EM algorithm remedies the issue of requiring
the entire observation vector to estimate parameters. Here we use the notation
Q̂t rather than Q(t). This is because, as we will see, one can not compute more
than one iteration at each time point t for the on-line EM.

The terms φ̂0 and ρ̂0(i, j, k) are initialized the same way as in the regular
EM algorithm. For t = 0, 1, . . . the components are updated as follows: (the
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E-step)

φ̂t+1 =
1(D(φt)Q̂tD(gθ(yt)))

1(D(φt)Q̂tD(gθ(yt)))1′
, (10)

ρ̂t+1(i, j, k) = γt+1I(j − k)r̂t+1(i|j) + (1− γt+1)

m∑
k′=1

ρ̂t(i, j, k
′)r̂t+1(k′|k),(11)

where r̂t+1 = D(φ̂t./1(D(φ̂t)Q̂t))Q̂t. And in the M-step, the transition matrix

Q̂t+1 = (q̂t+1(i, j)) is updated by:

q̂t+1(i, j) =
Ŝt+1(i, j)∑m
j=1 Ŝt+1(i, j)

, (12)

where Ŝt+1(i, j) =
∑m
k=1 φ̂t+1(k)ρ̂t+1(i, j, k).

As can be seen, Eqs. (10) and (11) are the modifications of Eqs. (8) and (9)

where φ̂1, φ̂2, ..., φ̂t and ρ̂1, ρ̂2, ..., ρ̂t did not depend on the parameter Q, but
rather Q̂t, and thus do not need to be recalculated.

In the proposed on-line EM algorithm by Cappé (2011), a decreasing se-
quence of forgetting factors {γt}∞t=1 is chosen such that

∑∞
t=1 γt = ∞ and∑∞

t=1 γ
2
t < ∞. The choice of γt strongly affects the convergence of the pa-

rameters. To converge to a stationary point one can choose γt = 1/tα with
0.5 < α < 1, which is the common choice suggested in Cappé (2011). By set-
ting γt to a fixed value, the algorithm will never converge to any fixed point
but behave like a stochastic processes. As we will see later, this can be useful
when the data comes from a non-stationary process, where the parameters are
not fixed over time.

2.3.1 Setting forgetting factor

When using a fixed value for γt (= γ) it is crucial that this value is well chosen.
A smaller γ gives a more stable parameter trajectory, at the price of a slower
adaptation. In the present form, it can be hard to see what a reasonable value
of γ is. To show this more clearly, we introduce two explanatory parameters
(K, R), which represent the weight, R, that is put on the K latest observations,
when estimating Q. So for instance, if K = 100, and R = 0.9, then the weight
given to the hundred latest observations is such that, they represent 90% of the
information from the data used to estimate the parameters.

To link the parameters K and R to γ, note that (11) is approximately a
geometric series with ratio γ, thus approximately it holds that

γ

K∑
i=0

(1− γ)i = R. (13)

This gives an explicit γ for each (R,K).

6



A further issue is that in general, one observation does not contain equal
information about all the entires in Q, some states (events) might occur rarely
and thus most observations contain no information about the corresponding
column in the transition matrix. To address this, one can set a separate γ for
each column. One way is to set γt,i = γ·(πt)i where πt is the averaged stationary
distribution vector defined below.

2.4 On-line estimation of the number of events

In previous work, see Maghsood et al. (2015), the Viterbi algorithm introduced
by Viterbi (1967) was used to calculate the number of driving events. However,
the Viterbi algorithm requires access to the entire data sequences and thus can
not be used for on-line estimation when the data is not stored. Instead we
compute the expected number of events as follows.

Suppose that at each time t, the Markov chain {Zt} has transition matrixQt.
By solving the equation (Qt − I)πt = 0, one gets the stationary distribution of

Qt. The expected number of ith event for {Zt}Tt=0 is equivalent to the number
of times that transitions j → i for all j 6= i occur. In addition, one should
consider the state at time zero, Z0, which can also be i. Therefore, the expected
number of ith event up to time T is:

ηi(T ) = E[I(Z0 = i)] + E[

T∑
t=1

ξi(t)] = π0,i +

T∑
t=1

∑
j 6=i

πt,jqt(j, i), (14)

where ξi(t) =
∑
j 6=i I(Zt−1 = j, Zt = i).

The above formula works if we substitute Qt with the on-line estimate Q̂t

for each t. Then, one can compute and update the number of events based on
each new observation.

2.5 HMMs with Laplace distribution

As mentioned in the introduction, we set the conditional distribution of Yt given
Zt, denoted by gθ(i, yt), to be a generalized asymmetric Laplace distribution
(GAL), see Kotz et al. (2001). The GAL distribution is a flexible distribution
with four parameters: δ− location vector, µ− shift vector, ν > 0− shape param-
eter, and Σ− scaling matrix and denoted by GAL(δ,µ, ν,Σ). The probability
density function (pdf) of a GAL(δ,µ, ν,Σ) distribution is

g(y) =
1

Γ(1/ν)
√

2π

(√
(y − δ)TΣ−1(y − δ)

c2

) 1/ν−d/2
2

e(y−δ)Σ−1µ

K1/ν−d/2

(
c2

√
(y − δ)TΣ−1(y − δ)

)
,

where d is the dimension of Y , c2 =
√

2 + µTΣ−1µ and K1/ν−d/2(.) is the
modified Bessel function of the second kind. The normal mean variance mixture
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representation can give an intuitive feel of the distribution. That is a random
variable Y having GAL distribution, and the following equality holds:

Y
d
= δ + Γµ+

√
ΓΣ1/2Z,

where Γ is a Gamma distributed random variable with shape 1/ν and scale one,
and Z is a vector of d independent standard normal random variable. For more
details see Barndorff-Nielsen et al. (1982).

3 Estimation of fatigue damage

Fatigue is a random process of material deterioration caused by variable stresses.
For a vehicle, stresses depend on environmental loads, like road roughness, ve-
hicle usage or driver’s behavior.

Often, the rainflow cycles are calculated in order to describe the environ-
mental loads, and the fatigue damage is then approximated by a function of the
rainflow cycles.

Typically, the approximations are done in order to reduce the length of the
load signals storing only the events relevant for fatigue. The reduced signal is
then used to find the fatigue life of components in a laboratory (or to estimate
the fatigue life mathematically). The reduction is mainly done in order to speed
up the testing which is very expensive (or simplify calculations).

In this section, we present a method to approximate the environmental load
using driving events. The method is similar to a well-known method in fatigue
analysis, the rainflow filter method, see e.g. Johannesson and Speckert (2013).
We show that one can explicitly calculate the expected damage intensity (which
describes the expected life time of a component) on-line.

We start with a short introduction to rainflow cycles and expected damage,
then show the approximation method that uses the driving event to derive the
expected damage.

3.1 Rainflow counting distribution and the expected dam-
age

The rainflow cycle count algorithm is one of the most commonly used methods
to compute fatigue damage. The method was first proposed by Matsuishi and
Endo (1968). Here, we use the definition given by Rychlik (1987) which is more
suitable for a statistical analysis of damage. The rainflow cycles are defined as
follows.

Assume that a load LT , the processes up to time T , has N local maxima.
Let Mi denote the height of the ith local maximum. Denote by m+

i (m−i ) the
minimum value in forward (backward) direction from the location of Mi until

LT crosses Mi again. The rainflow minimum, mrfc
i , is the maximum value of

m+
i and m−i . The pair (mrfc

i ,Mi) is the ith rainflow pair with the rainflow range

hi(LT ) = Mi −mrfc
i . Figure 1 illustrates the definition of the rainflow cycles.
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min rfc

h

Figure 1: The rainflow cycle.

By using the rainflow cycles found in LT , the fatigue damage can be defined
by means of Palmgren-Miner (PM) rule, see Palmgren (1924), Miner (1945),

Dβ(LT ) = α

N∑
i=1

hi(LT )β , (15)

where α, β are material dependent constants. The parameter α−1 is equal to the
predicted number of cycles with range one leading to fatigue failure (throughout
the article it is assumed that α equals one). Various choices of the damage
exponent β can be considered, like β = 3, which is the standard value for the
crack growth process or β = 5 which is often used when a fatigue process is
dominated by the crack initiation phase.

A more convenient representation, from computational viewpoint, of damage
is:

Dβ(LT ) = β(β − 1)

∫ +∞

−∞

∫ v

−∞
(v − u)β−2Nosc(u, v) du dv, (16)

where Nosc(u, v) is the number of interval ([u, v]) up-crossing by a load, see
Rychlik (1993) for details.

Since LT is a random process, one uses the expected damage as a tool to
describe damage. The damage intensity of a process is

dβ = lim
T→∞

1

T
E[Dβ(LT )]. (17)

Finally, using Eq. (16), we get that

dβ = β(β − 1)

∫ +∞

−∞

∫ v

−∞
(v − u)β−2µosc(u, v) du dv, (18)

where

µosc(u, v) = lim
T→∞

E [Nosc(u, v)]

T
. (19)

which is called the intensity of interval up-crossings.
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3.2 Reduced load and expected damage given driving events

In general the lateral loads are not available and will vary between vehicles. The
reduced load, we propose below, is constructed using estimated frequencies of
driving events from the HMM, and the distributions of extreme loads associated
with driving events, which can be measured on testing grounds or in laboratories.

We now describe how to construct a reduced load from the driving events left
turn, LT, and right turn, RT (the method could of course be generalized to other
driving events); these events are known to cause the majority of the damage for
steering components. Let {Zt}Tt=0 be the hidden processes in a HMM, with
three possible driving states right turn, left turn or straight forward, at time
t. Define Z∗i as the driving event representing the ith turn, occurring in the
time interval [ti,start, ti,stop]. We assume that Z∗i equals one if the turn is left,
and two if the turn is right. The relation between the two sequences {Z∗i }Ni=0

and {Zt}Tt=0 is that the event {Z∗i = 1}( or {Z∗i = 2}) is equivalent to that
Zti,start , ..., Zti,stop are all equal to, the same driving state, left turn (or right
turn).

Now to create the reduced load, from the sequence driving events, assume
that Mi and mi are the ith maximum and minimum load during a turn, that is

Mi = max
t∈Ii

Lt, mi = min
t∈Ii

Lt, (20)

where Ii = [ti,start, ti,stop] represents the start and stop points of ith turn. The

reduced load {Xi}2Ni=0 is defined as follows

Xi =


0, if i is odd integer,

Mi/2, if Z∗i/2 = 1, i is even integer,

mi/2, if Z∗i/2 = 2, i is even integer.

(21)

Here the zeros are inserted since between each left and right turn event there
must be a straight forward event. Figure 2 illustrates a lateral load and the
corresponding reduced load.
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Figure 2: Reduced load represented by dots where the observed load is repre-
sented by the irregular solid line.

To compute the damage intensity dβ , per driving event, one needs the interval
up-crossing intensity µosc(u, v) of {Z∗i }Ni=0. Assuming that both {Mi}Ni=0 and
{mi}Ni=0 are sequences of i.i.d. random variables, and that {Z∗i }Ni=0 is a Markov
chain with transition matrix P = (p(k, j)) (it can be derived from transition
matrix Q in the HMM, see Appendix), one gets the closed form solution

µosc(u, v) =
1

2


π∗2P (m1 < u), u < v < 0,

π∗2 P (m1 < u) p2(u, v), u ≤ 0 ≤ v,
π∗1P (M1 > v), 0 < u < v.

(22)

Here π∗ = (π∗1 , π
∗
2) is the stationary distribution of the P and p2(u, v) can be

derived from the equation system:

pj(u, v) = p(j, 1)P (M1 > v) + P (M1 ≤ v) p(j, 1) p1(u, v)

+ P (m1 ≥ u) p(j, 2) p2(u, v), j = 1, 2. (23)

For more details see Maghsood et al. (2015).

4 Examples

We evaluate the proposed algorithm with simulated and measured data sets.
We consider the steering events occurring when the vehicle is driving at a speed
higher than 10 km/h, e.g. when driving in curves. We estimate the number of
left and right turns for a costumer. We further investigate the damage caused by
steering events and compute the expected damage using the on-line estimation
of transition matrix.
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In our simulation study, a training set is used to estimate the parameters of
the model which contains all steering events. We also use the simulation study
to show the effects of different values of forgetting factor γ.

Finally, we use the measured data which is dedicated field measurements
from a Volvo Truck. The measured signals come from the CAN (Controller
Area Network) bus data, which is a systematic data acquisition and contains
customer data.

4.1 Simulation study

We want to imitate a real journey during different road environments, such as
city streets and highways. This is done by first generating a sequence of steering
states using a Markov chain. We consider three states right turn (RT), left turn
(LT) and straight forward (SF). We set these events as three hidden states and
construct the HMM based on them as follows: We assume that the probabilities
of going from a right turn to a left turn and vice versa are small and most
often we will have straight forward after a right or a left turn. It has been also
assumed that the average duration of straight forward during a city road is less
than highway. Two different transition matrices Qcity and Qhighway have been
considered for city and highway respectively:

Qcity =


RT SF LT

RT 0.85 0.1 0.05
SF 0.025 0.95 0.025
LT 0.05 0.1 0.85

,Qhighway =


RT SF LT

RT 0.90 0.08 0.02
SF 0.005 0.99 0.005
LT 0.02 0.08 0.90

.
Second, we use Laplace distribution to simulate the lateral acceleration sig-

nal, Yt. The Laplace parameters (δ, µ, ν,Σ) for each state are set as follows:

• δRT = −δLT = −1, δSF = 0,

• µRT = −µLT = −0.5, µSF = 0,

• νRT = νLT = 10, νSF = 0.5,

• ΣRT = ΣLT = 0.2, ΣSF = 1.

The fitted distributions for lateral acceleration values within each state are
shown in Figure 3.
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Figure 3: (a), (b) and (c) represent the Laplace distributions fitted on lateral
acceleration values for right turns, straight forward and left turns respectively.

We compare four different values of γt for the estimation of the transition
matrix. First, we set γt = 1/tα where α = 0.9. This value of forgetting factor
satisfies the convergence conditions given by Cappé (2011). Second we use three
different values of fixed γ, 0.01, 0.002 and 0.001–corresponding to R = 0.9 and
K = 200, 1000 and 2400 (which corresponds to a duration 2 min, 10 min, and
20 min) in Eq. (13). Figure 4 shows the estimated diagonal elements of the
transition matrices for one simulated signal. The simulated signal represents a
journey on a city road, a highway and then back to a city road and again highway
over 105 seconds, where the sampling period is 1/2 seconds. The straight thick
black lines show the diagonal elements of true transition matrices Qcity and
Qhighway.
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Figure 4: Diagonal elements of on-line estimated transition matrix, simulated
signal from City road+Highway+City road+Highway, with four different values
of γ. Straight thick black lines show the diagonal elements of true transition
matrices Qcity and Qhighway.

In Figure 4, one can see that the on-line algorithm with variable γ can not
follow the changes of the parameters well and that the adaption diminishes over
time, as is to be expected. The fixed forgetting factor, however, seems to adapt
well to the chaining environment.

Expected number of events

Here, we compute the expected number of turns. We simulate independently
hundred signals in order to investigate the accuracy of the on-line algorithm
with different forgetting factors γ. In that case, we choose as before four dif-
ferent values for the forgetting factor. The values of the fixed forgetting factors
correspond to R = 0.9 and K = 200, 1000 and 2400 in Eq. (13).

We perform 100 simulations and estimate the intensities of occurrences of
turns by Eq. (14):

ηLT = π0,3 +

T∑
t=1

(πt,2q̂t(2, 3) + πt,1q̂t(1, 3)), (24)

ηRT = π0,1 +

T∑
t=1

(πt,2q̂t(2, 1) + πt,3q̂t(3, 1)). (25)

In order to validate the results, we compute an error rate which is the difference
between the estimated and observed number of turns in each simulation. The
expected number of turns from the model (using Qcity and Qhighway) are ηLT =
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ηRT = 2840. The average number of observed left and right turns are nLT =
2834 and nRT = 2836, respectively. The average and the standard deviations of
errors for 100 simulations are computed. The results are presented in Table 1.
According to the average error, the forgetting factor γt = 0.002 performs the
best. However there is, surprisingly, only a small difference between all the fixed
forgetting factors.

Table 1: The expected number of turns estimated by on-line algorithm and
Eqs. (24), (25). The errors are the average of the differences between the esti-
mated and observed number of turns.

On-line algorithm
γt 1/t0.9 0.01 0.002 0.001
Turns ηLT ηRT ηLT ηRT ηLT ηRT ηLT ηRT

Mean Est. 3236 3241 2928 2932 2882 2886 2920 2924
Mean Error 402.48 405.30 94.40 96.46 48.45 49.93 86.84 88.68
Std Error 28.45 33.78 15.41 15.79 16.61 17.77 20.65 21.43

In our previous work, an HMM combined with a Viterbi algorithm, see
Viterbi (1967), has been used to identify the driving events. The Viterbi algo-
rithm gives a reconstructed sequence of events which maximizes the conditional
probability of the observation sequence. In that approach, all data has to be
used to estimate the driving events and is thus not suitable to on-board usage in
a vehicle. However, in order to compare the previously proposed approach with
the on-line estimation and to evaluate the frequencies of driving events, we also
compute the number of turns by the Viterbi algorithm for each simulation. The
counted number of turns from the Viterbi algorithm are on average ηLT = 2923
and ηRT = 2925. One can see that the Viterbi algorithm overestimates the
number of turns.

Damage investigation

In this section we compute the damage intensity per kilometer based on on-line
estimation of transition matrix. We use one of the simulated lateral acceleration
signal in order to calculate the damage. The speed of the vehicle is considered
50 kilometers per hour and the mileage is 1000 km (for a sampling period of 1/2
seconds). We split the signal into 1000 equally sized frames. For each frame,
the expected number of turns are computed by ∆ηk = ηk−ηk−1 where ηk is the
estimated number of turns occurring over the first k kilometers. The expected
damage based on turns for each frame is calculated by:

∆dk = ∆ηkdk,

where dk is the expected damage per turn and calculated by means of Eqs. (18)
and (22). The empirical distribution of Mi and mi are used to calculate the
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intensity of interval crossings µosc(u, v). We use the on-line estimation of tran-
sition matrix Q with γ = 0.002 to estimate the transition matrix P by using
Eqs. (.28) and (.27), see Appendix. The result for damage exponent β = 3
is shown in Figure 5. The straight thick red line shows ∆dk(Qtrue), which is
the damage intensity computed using the model transition matrices Qcity and
Qhighway for city and highway respectively. We can observe the change in dam-
age between highway and city road. As might be expected the damage intensities
(per km) estimated for the city are higher than for highway, since the number
of turns occurring in a city road are larger than on a highway.
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Figure 5: Damage intensity per km according to the on-line estimation of tran-
sition matrix with γ = 0.002. The upper plot shows the results for damage
exponent β = 3. The straight thick red line shows ∆dk(Qtrue) which is the
damage intensity computed using model transition matrices Qcity and Qhighway

for city and highway, respectively.

Further, the expected damage from the model (theoretical damage) is com-
pared with the total damage and the damage calculated from the reduced load.
One can see that the expected damage for the whole signal – based on on-line
estimation of transition matrix– is equal to

∑1000
k=1 ∆dk. The total damage is

calculated from the lateral acceleration signal using the rainflow method. The
damage evaluated for the load (lateral acceleration), reduced load and the ex-
pected damage is compared in Table 2. The numerical integration in (18) as well
as the rainflow cycle counting has been done using the WAFO (Wave Analysis
for Fatigue and Oceanography) toolbox, see Brodtkorb et al. (2000); WAFO
Group (2011a,b).
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Table 2: Comparison of damage computed for the simulated load, the corre-
sponding reduced load and the expected damage.

Damage Total Reduced load
Expected

On-line with γ = 0.002
β = 3 1.88 · 106 1.68 · 106 1.68 · 106

β = 5 1.77 · 108 1.72 · 108 1.67 · 108

Figure 5 and Table 2 demonstrate high accuracy of the proposed approach
to estimate the expected damage for the studied load. Obviously this load is a
realistic mathematical model of a real load. In the next section we will apply our
method to estimate the steering events and compute the damage for a measured
load on a VOLVO truck.

4.2 On-board logging data from Volvo

To evaluate the method on a real data set, we study field measurements coming
from a Volvo Truck. We use the measured lateral acceleration signal from the
CAN (Controller Area Network) bus data.

We fit the Laplace distribution for the lateral acceleration within each steer-
ing state. To estimate the Laplace distribution parameters considered, we need
a training set which contains all history about the curves. We detect the events
manually by looking at video recordings from the truck cabin to see what hap-
pened during the driving. The manual detections are not completely correct
because of the visual errors and the low quality of videos used for the manual
detection.

The on-line algorithm is used to count the number of left and right turns.
Figure 6 shows the estimation results using on-line algorithm with γt = 0.0008,
(R = 0.8,K = 2000) for the measured signal. It is interesting to note that there
is a sudden change in the driving environment after around 5000 sec.
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Figure 6: Diagonal elements from on-line estimation of transition matrix with
γt = 0.0008 for measured data

The expected number of left and right turns computed by on-line algorithm
are ηLT = 228 and ηRT = 241 respectively.

Damage investigation

Here, we compute the damage intensity based on the model. In order to do
that we split data into the frames containing 250 seconds (approximately 4-5
km) of measurement and we compute the distance based on the average speed
in each frame. Figure 7 shows the expected damage based on turns computed
by ∆dk = ∆ηkdk where ∆ηk = ηk − ηk−1 and nk is the estimated number of
turns occurring over the first k kilometers. Here, the results are based on the
damage exponent β = 3.
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Figure 7: Damage intensity with damage exponent β = 3 regarding mileage.
The on-line estimation of transition matrix with γ = 0.0008 has been used to
estimate the expected damage.

The total expected damage using on-line estimation of transition matrix
can be computed by

∑
k=1 ∆dk. The damage evaluated for the load (lateral

acceleration), reduced load and the expected damage is compared in Table 3.
The Rayleigh distributions which have been fitted to positive and negative values
of the reduced load are

P (M1 > v) = e−
1
2 ( v

2.2 )
2

, v ≥ 0, P (m1 < u) = e−
1
2 ( u

2.3 )
2

, u ≤ 0.

Table 3: Comparison of damage values computed from the measured load, the
corresponding reduced load and the expected damage.

Damage Total Reduced load
Expected

On-line with γ = 0.0008
β = 3 8.1 · 103 7.4 · 103 7.7 · 103

β = 5 1.5 · 105 1.5 · 105 1.9 · 105

We also compare the damage accumulation process from the model,
∑
k=1 ∆dk,

with the empirical accumulated damage in the signal. The expected damage
based on fitted model will be called the theoretical damage. Figure 8 shows the
theoretical and observed accumulated damage processes. It can be seen that
the accumulated damage from the model is close to the observed damage and
there are two damage rates in both theoretical and observed damage processes.

19



0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Distance (km)

D
am

ag
e 

in
de

x

Accumulated damage

 

 

Observed

Theoretical

Figure 8: The theoretical and observed accumulated damage processes for dam-
age exponent β = 3. The on-line estimation of transition matrix with γ = 0.0008
has been used to estimate the expected damage.

Results shown in Figure 8 and Table 3 demonstrate the accuracy of the
proposed methodology for this measured load.

5 Conclusion

In this article, we have derived a method to estimate the number of driving
events for a vehicle using the CAN data through the use of an HMM. The
method uses an on-line EM algorithm to estimate the parameters of the HMM.
The on-line version has three major advantages over the regular EM algorithm,
making it possible to implement the method on-board a vehicle: the computa-
tional complexity of each iteration of the algorithm is O(1), making it a com-
putationally tractable method; the parameters are estimated without the need
to store any data; the formulation of the on-line algorithm allows for an adap-
tive parameter estimation method, using a fixed forgetting factor, so that the
parameters can adapt over chaining driving environment.

The proposed estimation algorithm was validated using simulated and mea-
sured data sets. The results show that the on-line algorithm works well and can
adapt to a chaining environment when the driving conditions are not constant
over time.
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Cappé, O., Moulines, E., and Rydén, T., editors (2005). Inference in Hidden
Markov Models. Springer.
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Appendix

Derivation of transition matrix of driving events

To construct the sequence {Z∗i }Ni=0, of driving events, let {tk}Nk=0 be the indices
in {t : Ztk 6= Ztk−1 ∩ Ztk 6= SF}, then

Z∗k =

{
1, if Ztk = LT,

2, if Ztk = RT.
(.26)

Assume that Z∗ has transition matrix P = (p(k, j)). Note that the hidden
process {Zt}Tt=0 in HMM has three states ”1” = RT, ”2” = SF and ”3” = LT.
One can now derive the transition matrix P from the transition matrix of the
HMM Q̂ as follows:

p̂(1, 1) =
q̂(3, 2)q̂(2, 3)

(1− q̂(2, 2))(1− q̂(3, 3))
, (.27)

p̂(2, 2) =
q̂(1, 2)q̂(2, 1)

(1− q̂(2, 2))(1− q̂(1, 1))
. (.28)

As proof, we consider for instance the probability of going from LT to RT in Z∗i
which can be computed as follows:

p̂(1, 2) = P (Z∗i+1 = 2|Z∗i = 1)

= P (Zti,start:ti,stop = 3, Zti,stop+1:ti+1,start−1 = 2, Zti+1,start:ti+1,stop = 1)

+ P (Zti,start:ti,stop = 3, Zti+1,start:ti+1,stop = 1),

=
(
q̂(3, 2)

(
1 + q̂(2, 2) + q̂2(2, 2) + ...

)
q̂(2, 1) + q̂(3, 1)

)
(1 + q̂(3, 3) + q̂2(3, 3) + ...),

=

[
q̂(3, 2)q̂(2, 1)

1− q̂(2, 2)
+ q̂(3, 1)

]
1

1− q̂(3, 3)
,

where Zti,start:ti,stop represents the sequence of consecutive driving states Zti,start ,
..., Zti,stop .
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