

ESPLANADE

Efficient and Safe Product Lines of Architectures eNabling Autonomous DrivE

An FFI project running from 2017-01-01 to 2020-03-31.

Background

- Increased interest in vehicle automation in early 2010s
 - Challenges for safety assurance
 - Uncertain relation to safety standards (e.g. ISO 26262)
- FUSE project (2013-2016)
- ESPLANADE (2017-2020)

FUnctional **S**afety and **E**volvable architectures for autonomy

Research Questions in ESPLANADE

- How to show that interactions between ADS and human users are safe?
- How to ensure that the hazard analysis is complete and the safety goals are useful for implementing the ADS?
- How to create an architecture where decisions are aligned with the current operational capability to ensure safe operation?
- How to ensure the safety integrity of a sensor system (redundancy and degradation concepts)?
- How to structure safety requirement refinement to be able to ensure completeness and consistency in the requirements hierarchy?

Methodology

- Method development considering the example of two use cases
 - Trucks "terminal to terminal"
 - Passenger cars "highway pilot"

Highlights Safe Transitions of Responsibility

- Transition of control between human driver and ADS
 - Hazards
 - Design principles
 - Safety analysis

ESPLANADE papers:

- Safe Transitions Between a Driver and an Automated Driving System in International Journal of Advances in Systems and Measurement, 2017.
- Safer Transitions of Responsibility for Highly Automated Driving: Designing HMI for Transitions with Functional Safety in Mind in ERTS 2020.
- Towards Safety Analysis of Interactions Between Human Users and Automated Driving Systems in ERTS 2020.

Highlights Hazard analysis for an ADS

- Proposing a new kind of hazard analysis better suited for an ADS
 - Risk norm with tolerated frequencies of incidents
 - Incident types mapped to risk norm
 - Safety goals based on incidents

ESPLANADE papers:

- Introducing ASIL Inspired Dynamic Tactical Safety Decision Framework for Automated Vehicles in ITSC 2017
- The Quantitative Risk Norm A Proposed Tailoring of HARA for ADS in SSIV 2020
- Concepts and Risk Analysis for a Cooperative and Automated Road Vehicle System in SERENE 2020

Highlights Operational Design Domain (ODD)

- Using an ODD to confine the safety argument
- Properties of an ODD
 - Defining operating conditions (OCs)
 - Verification against OCs
- Strategies to remain within ODD

			Need to estimate	Need to define	Need for	Need for sensors
Strategies			inside ODD	triggering cond.	reliable	capable of
	-		in design-time.	for DDT-fallback	map info.	measuring condition
Ι	Internal	Inherent in ADS feature definition	N	N	N	N
П		Checking mission when accepting strategic task	Y	N	Y	N
III	External	Statically defined, spatial and temporal triggering conditions	Y	Y	Y	N
IV		Run-time measurable triggering cond. related to OC	N	Y	N	Y

ESPLANADE papers:

- Towards an Operational Design Domain That Supports the Safety Argumentation of an Automated Driving System in ERTS 2020.
- Design of a Knowledge-Base Strategy for Capability-Aware Treatment of Uncertainties of Automated Driving Systems in WAISE 2018
- The Frequency-based Operational Design Domain and the Role of Minimal Risk Condition for Safe Automated Driving Systems (not yet published)

Thank you for your attention!

- Visit the project website for more information
 - Public report
 - Links to the 17 publications

O https://esplanade-project.se

on March 31st 2020. It is partly financed by Vinnova through the FFI program, a partnership between the Swedish government and the automotive industry.

Photo: Volvo Cars

