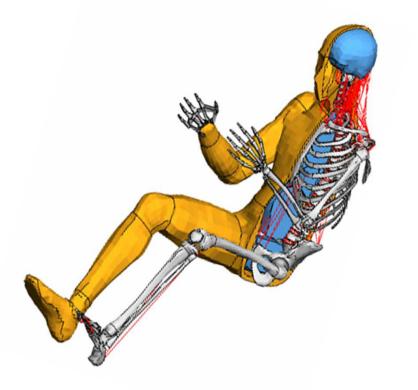
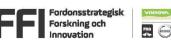


VÄSTRA GÖTALANDSREGIONEN sahlgrenska universitetssjukhuset

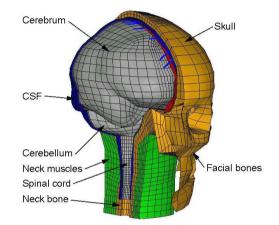


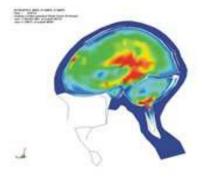
SCANIA VOLVO


FFI Resultatkonferens 17/9 2019

Humanmodellering: Var är vi och vart är vi på väg?

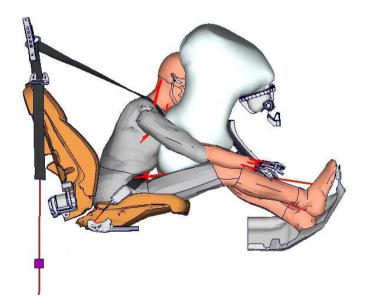
Bengt Pipkorn



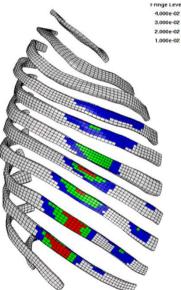


KTH head modell

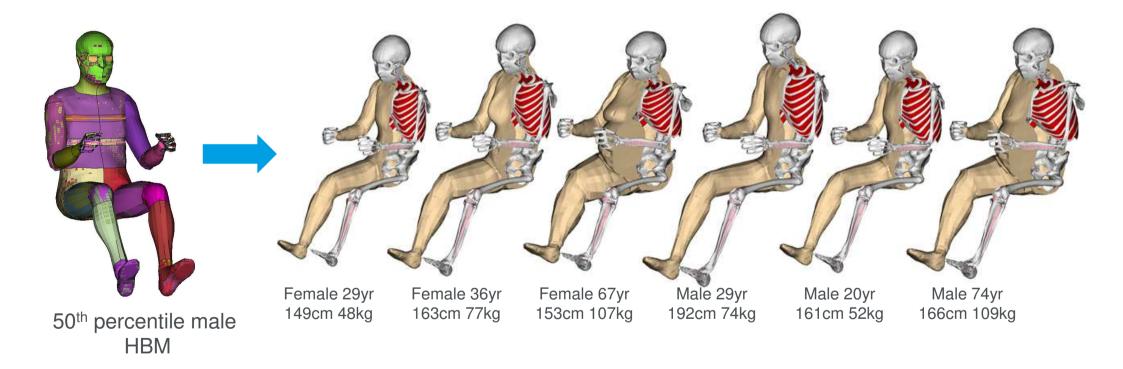
Status SAFER HBM v9.0


The SAFER HBM is a 50%-ile morphable Human Body Model with active and passive properties for combined pre-crash and in-crash and only in-crash analysis

Standardised pre- and postprocessing to minimize analysts influence on results and conclusions


Status Active SAFER HBM v9.0 – Capabilities In-Crash Analysis

- Predicts both driver and passenger kinematics
- Omnidirectional Predicts occupant kinematics for frontal to lateral load
- Predicts the risk of
 - rib fractures based on occupant age
 - concussions (AIS1 & AIS2)
 - lumbar spine fractures



Status SAFER HBM v9.0 - Capabilities Combined Pre-Crash and In-Crash Analysis

- Predicts driver and passenger kinematics in pre-crash braking followed by crash (from frontal to lateral crash)
- Predict passenger kinematics in pre-crash avoidance maneuvers followed by crash (from frontal to lateral crash)
- Predict the risk of
 - rib fractures based on occupant age
 - concussions (AIS2 & AIS2)
 - lumbar spine fractures

Status SAFER HBM v9.0 - Capabilities Seamlessly Morphable to Any Adult Human Anthropometry

Example Morphed SAFER HBM: 85 Year Old, Female, 153 cm, BMI of 26

1:d3plot.fz : (fo3 224673,224505,816180) : PTU V70 MORPHED THUMS P4 : STATE 1 ,TIME 0.00000000E+00

Long Term Goal Human Body Modelling

A biofidelic tool to predict human complex pre-crash and crash kinematics incl multiple impacts and run off road events.

The tool is to predict the most common moderate to fatal and disabling injuries for the diverse population.

A tool useful for development of countermeasures and support of rating and legal programs

Summary of Development of Implementable omni-directional chest and spine criteria for human body models

Aim

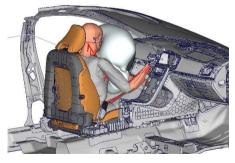
To validate on a multi-scale level the capability of the SAFER HBM to predict the risk for an occupant to sustain two or more fractured ribs (NFR 2+)

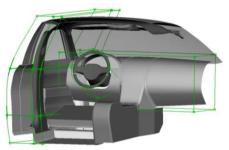
Data Sources for Validation of the Capability of the Model to Predict 2 or more Fractured Ribs

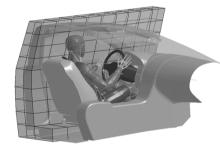
PMHS Tests

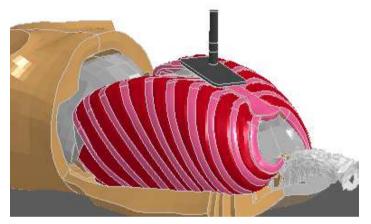
Detailed Reconstructions

Population Reconstructions

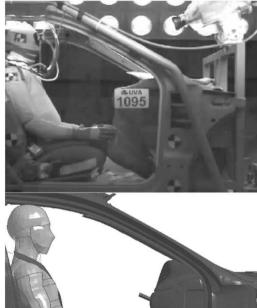


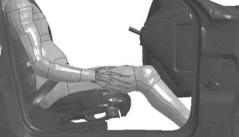

Table Top


Sled

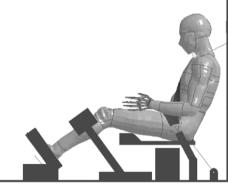


Frontal Impact


Side Impact

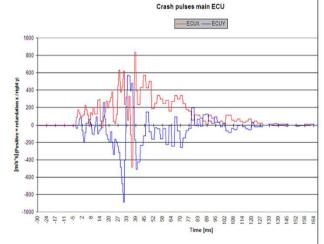

PMHS Table Top Tests

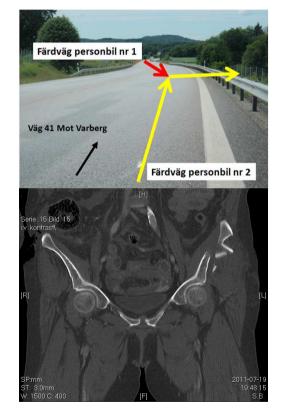
5 denuded PMHS thoraxes Rigid indentors, covered by rubber indentor speed was 1 m/s Strokes were either 18-30mm (non-injurious) or 80mm (injurious) Injurious tests at least 2 fractured ribs were received by both test subjects

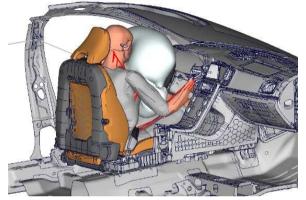

PMHS Sled Tests

Ford Taurus 1999 3 Subjects Dv 30km/h 3-pt belt

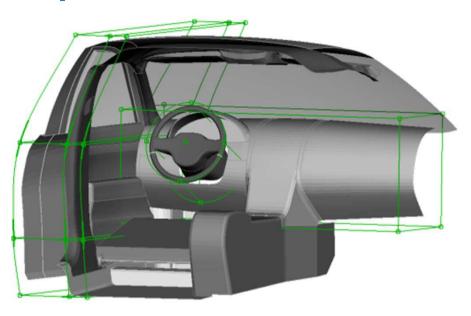
Gold Standard 8 Subjects Dv 40km/h 3-pt belt

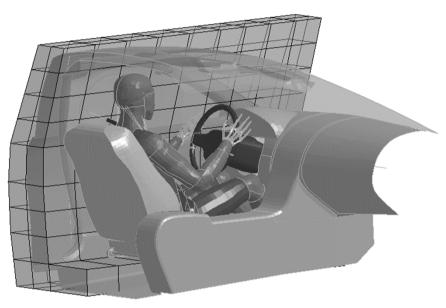



Gold Standard Modified 2 Subjects Dv 30km/h 3-pt belt Pretensioner & Load Limiter


Detailed Reconstructions

Sparad kollisionspuls





Detailed Reconstruction Cases 50%-ile SAFER HBM

	Sex	Position	Age	Height	Weight (kg)	BMI	Impact Type	DV	Overlap (%)	Direction
				(cm)				(km/h)		
1	Male	Driver	67	178	79	25	Frontal	49	25	12
2	Male	Driver	81	-	84	-	Frontal	53	25	11
3	Female	Passenger	82	-	70	-	Frontal	53	25	11
4	Male	Driver	44	180	80	25	Frontal	58	80	12
5	Male	Driver	44	165	65	24	Frontal	53	30-50	11
6	Male	Driver	67	-	-	-	Frontal	77	100	-
7	Female	Passenger	62	-	-	-	Frontal	83	30-50	11
8	Female	Rear Seat	85	153	61	26	Frontal	83	30-50	11
9	Male	Driver	79	186	91	26	Frontal	42	30	-
10	Male	Driver	42	-	-	-	Frontal	64	34	11
11	Male	Driver	19	-	-	-	Side	75		
12	Male	Driver	42	170	80	28	Frontal	70	65	9
13	Male	Driver	46	-	-	-	Frontal+Run-Off	34	80	12
14	Female	Driver	52	168	67	24	Frontal	54	70	11
15	Male	Driver	39	182	70	21	Frontal	64	65	-
16	Female	Passenger	37	163	63	24	Frontal	64	65	-
17	Female	Driver	38	170	90	31	Frontal+Run-Off	39	20	11
18	Male	Passenger	34	188	94	27	Frontal+Run-Off	39	20	11
19	Male	Driver	42	-	-	-	Frontal	65	-	-
20	Male	Driver	22	-	-	-	Frontal	90	Mid (Tree)	-

Population Based Reconstructions

NASS/CDS database containing cases with both injured and uninjured occupants one for frontal impacts and one for lateral impacts Model year later than 1999

n=5083 cases (1,474,869 cases weighted) 185 occupants (17,810 occupants weighted) rib fractures (AIS2+) Belted front seat occupants, near side, deployed bag.

n=569 cases (166,209 cases weighted)60 occupants (3,495 occupants weighted)rib fractures (AIS2+) for the lateral analysis

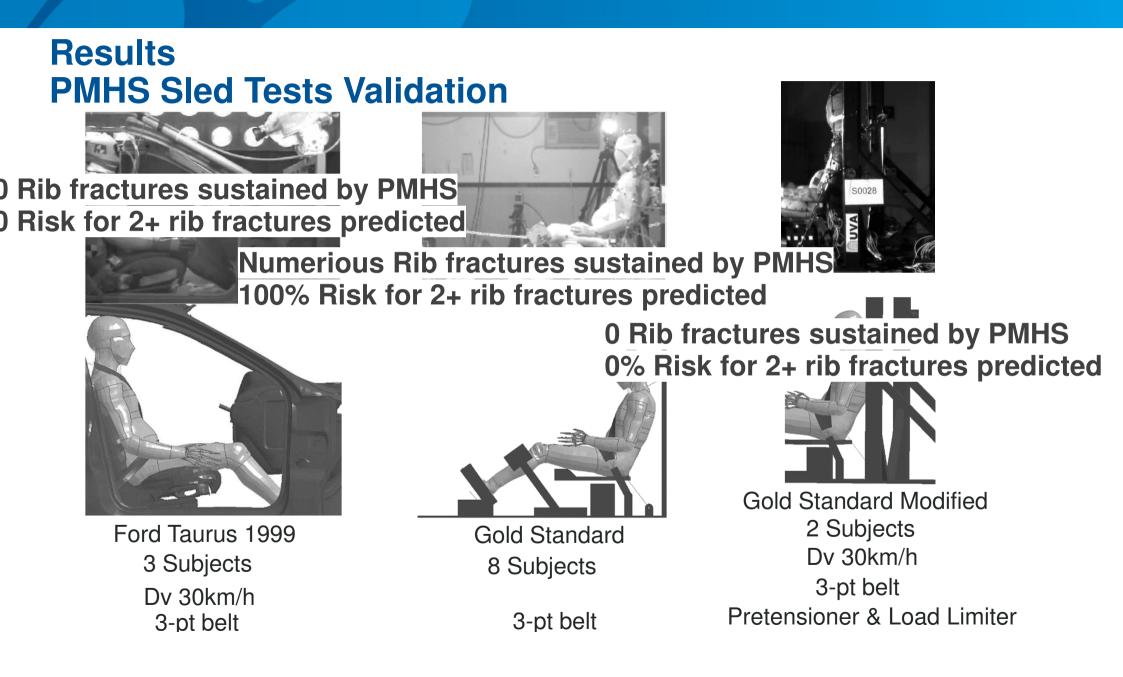
Population Based Reconstructions Statistical Distributions

Interior safety system parameters:

- Airbag size
- Airbag pressure
- Airbag TTF
- Steering column collapse force
- Belt pretensioner force
- Belt load limiter force

Boundary condition parameters:

- Delta velocity
- PDOF
- Pulse duration
- Pulse shape
- IP intrusion
- Footwell intrusion

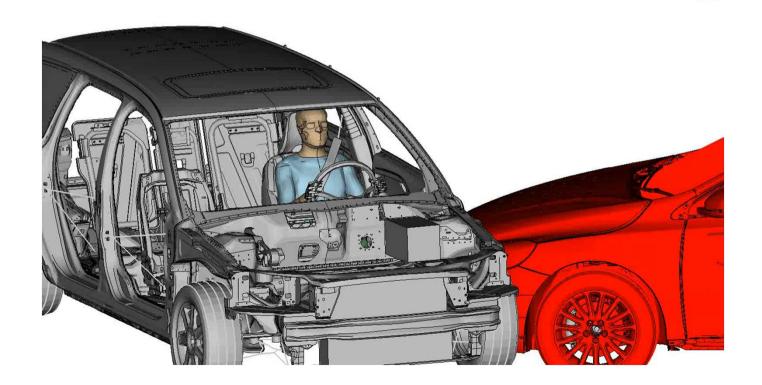

Vehicle parameters:

- Steering wheel position
- Distance to IP
- Distance to side structure
- IP stiffness
- Friction

Results PMHS Table Top Tests Validation

5 denuded PMHS thoraxes Rigid indentors, covered by rubber indentor speed was 1 m/s Strokes were either 18-30mm (non-injurious) or 80mm (injurious) Injurious tests at least 2 fractured ribs were received by both test subjects

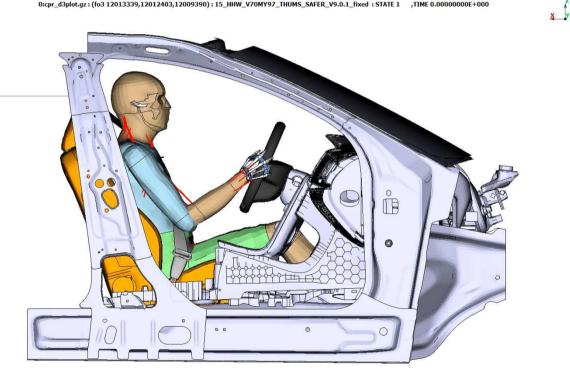
Results Detailed Reconstructions Male 67 Year Old


Nr	Age	Chest injuries sustained by the occupants	NFR 2+ Risk
6	67	1-2 rib fractures right side (AIS2)	94.7%

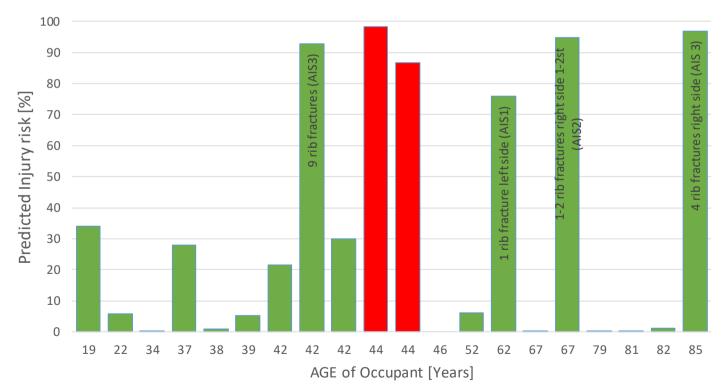
Results Detailed Reconstructions Male 19 Year Old

Nr	Age	Chest injuries sustained by the occupants	NFR 2+ Risk
11	19	Spleen rupture (AIS3)	34.0%

× ×


0:d3plot.fz : c2c_v40_v70_run91 : STATE 1 ,TIME 0.0000000E+00

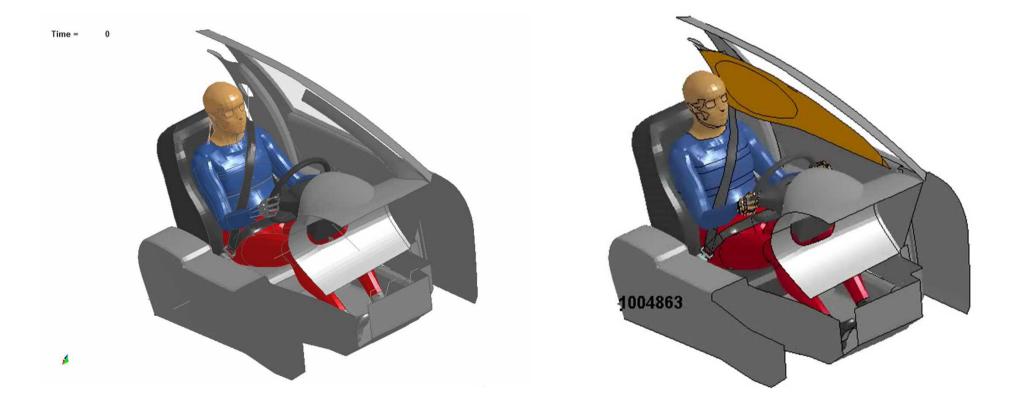
Results Detailed Reconstructions Male 42 Year Old


Nr	Age	Chest injuries sustained by the occupants	NFR 2+ Risk
12	42	9 rib fractures (AIS3), 2 sternum fractures (AIS2)	92.8%

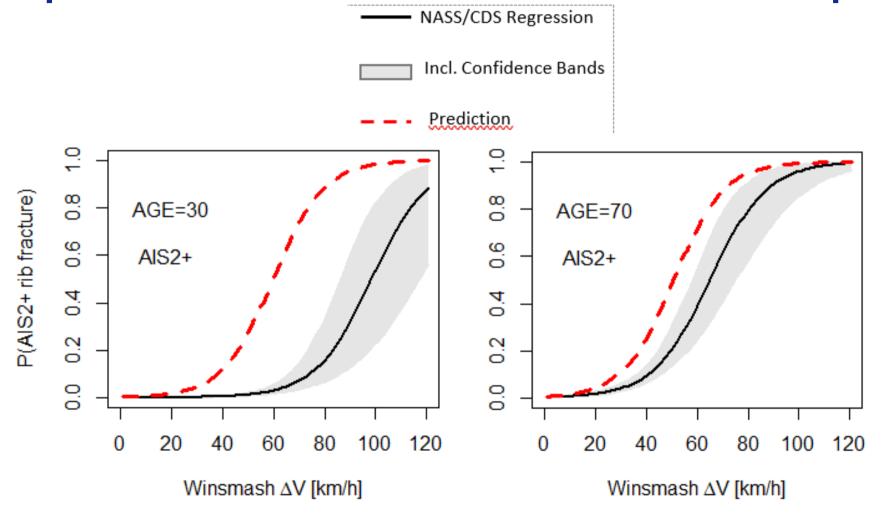
0:cpr_d3plot.gz : (fo3 12013339,12012403,12009390) : 15_HHW_V70MY97_THUMS_SAFER_V9.0.1_fixed : STATE 1 ,TIME 0.00000000E+000

SAFER HBM v 9.0

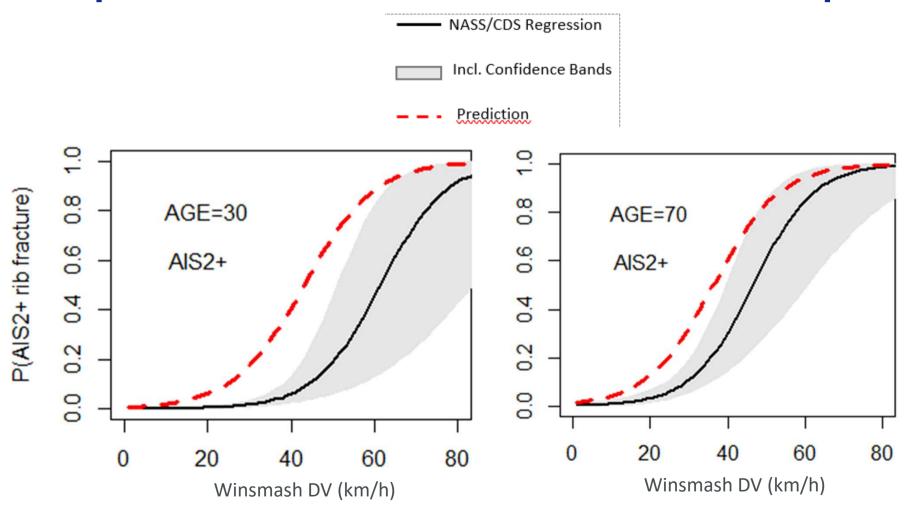
- Validation of generic ribcage fracture prediction (detailed reconstructions)



Detailed Reconstructions

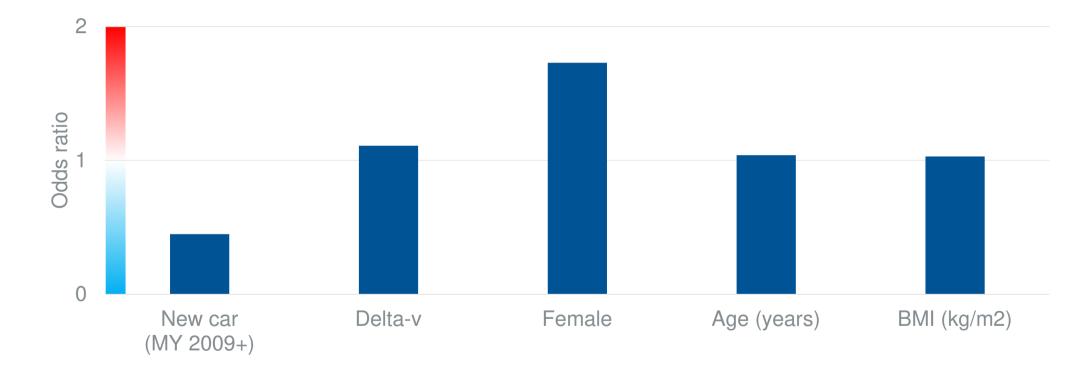

Results Rib Fracture Predictions Detailed Reconstructions

Nr	Age	Chest injuries sustained by the occupants in the accident	NFR 2+ Risk	
1	67		0.10%	DV 58km/h
2	81	Sternum fracture (AIS2)	0.2%	
3	82		1.1%	
4	44		98.4%	
5	44	Lung contusion (AIS3)	86.7%	
6	67	1-2 rib fractures right side 1-2st (AIS2)	94.7%	
7	62	1 rib fracture left side (AIS1), pneumothorax (AIS2)	76.0%	
8	85	Chest contusion (AIS 1), 4 rib fractures right side (AIS 3),	97.0%	
		pneumothorax (AIS4)		
9	79		0.3%	
10	42		21.7%	
11	19	Spleen rupture (AIS3)	34.0%	
12	42	9 rib fractures (AIS3), 2 sternum fractures (AIS2)	92.8%	DV 64km/h
13	46		0.0%	
14	52	Chest contusion (AIS1)	6.1%	
15	39		5.2%	
16	37		28.0%	DV 65km/h
17	38	1 sternum fracture (AIS2), chest contusion (AIS1)	0.8%	
18	34		0.1%	
19	42		29.9%	
20	22	Bleeding left lung (AIS3)	5.8%	


Results Population Based Front and Side Impact

Results Population Based Reconstructions - Frontal Impact

Results Population Based Reconstructions- Side Impact



Conclusion

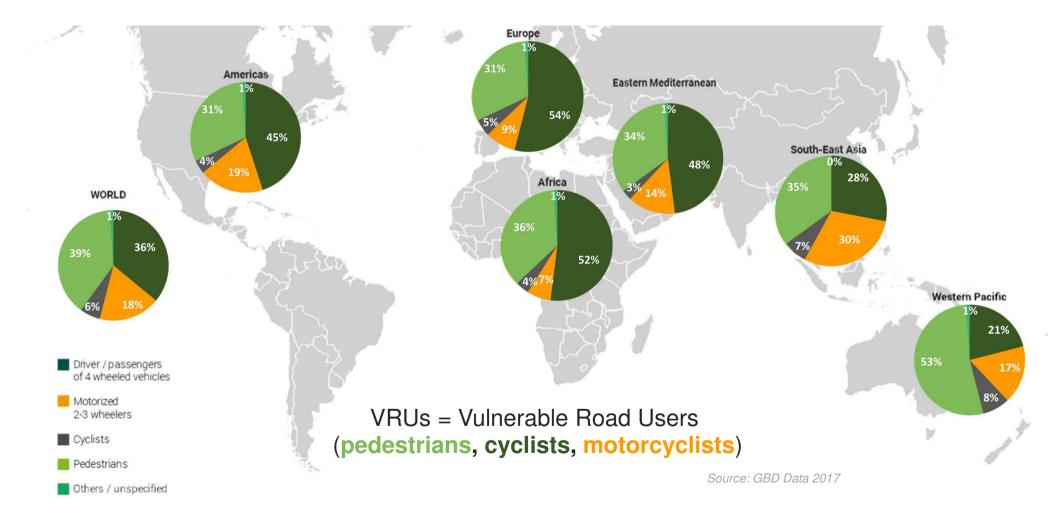
SAFER HBM predicted the risk of AIS2+ rib fractures in PMHS sled tests and in detailed accident reconstructions. In the population based reconstructions the risk was overpredicted.

What is next?

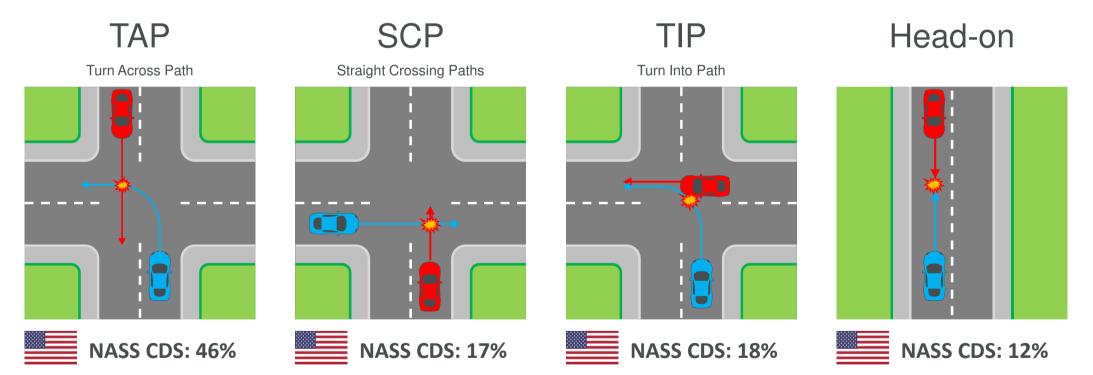
Modern Cars At risk for AIS3+ Occupant Injuries: Female, Elderly, Obese

J. Forman, G. S. Poplin, C. G. Shaw, T. L. McMurry, K. Schmidt, J. Ash & C. Sunnevang (2019). Automobile injury trends in the contemporary fleet: Belted occupants in frontal collisions, *Traffic Injury Prevention*

Modern Cars AIS2+ Occupant Injuries in Modern Cars

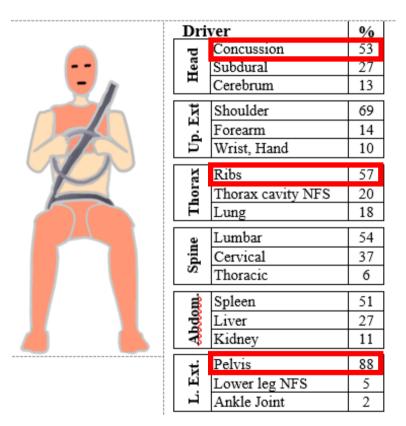

Other head trauma -Head nerves -Other head trauma Head nerves Basilar skull Ex Basilar skull Ex /ault skull Fx Head, face, neck (non-spine) Vault skull Fx Head, face, neck (non-spine) Brain, severe Brain, severe Brain, moderate , moderate Concussion oncussio Facial F) Facial F Neck, non-spine eck, non-spine horax, skeleta horax, skeletal Thorax, organ Abdomen, tissue Abdomen, organs Abdomen, tissue Torso and Spine Torso and Spine Abdomen, organs soine spine spine -spine -spine -spine Up ext. tissues Up ext. tissues Upper Extremities **Upper Extremities** houlder houlder Arm/Forearm Forearm Hand/wrist and/wrist Pelvis ²elvis Lower Extremities Lower Extremities Thiah Knee complex Knee complex ,ec Ankle/fool Ankle/foot Low ext, tissues Burns Low ext, tissues Burns 1.00% 0.50% 0.50% 1.00% 0.00% 0.00% Injured body section, percentage of occupants (weighted) Injured body section, percentage of occupants (weighted) Front Passenger 2nd Row Driver 2nd Row Front Passenger Driver

Model Year 1989-2008


J. Forman, G. S. Poplin, C. G. Shaw, T. L. McMurry, K. Schmidt, J. Ash & C. Sunnevang (2019). Automobile injury trends in the contemporary fleet: Belted occupants in frontal collisions, Traffic Injury Prevention

Model Year 2009+

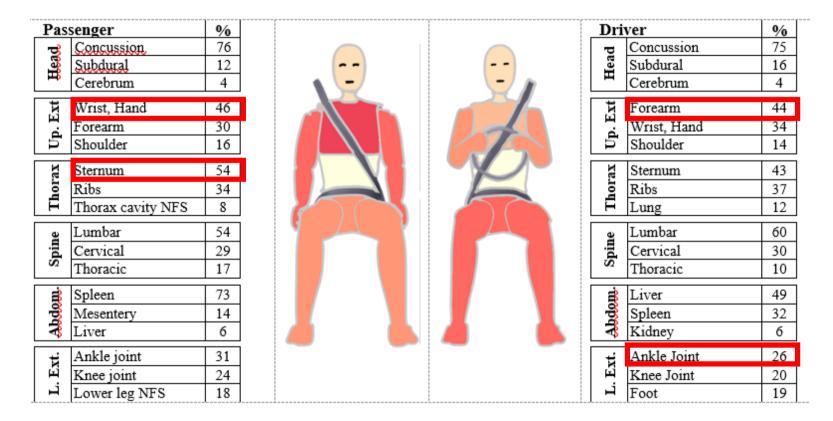
VRUs dominate Road Fatalities across world with > 60% share



Future Cars Four Scenarios Cover 90% of Future Accidents (AIS2+ car-to-car)

Östling M, Lubbe N, Jeppsson H, Puthan P. Passenger car safety beyond ADAS: Defining remaining accident configurations as future priorities.. ESV conference 2019

Future Cars Most Common Injuries in Near-Side Impact - TAP


Pipkorn B, Iraeus J, Lindquist M, Puthan P, Bunketorp O. Occupant Injuries in Light Passenger Vehicles – A NASS Study to Enable Priorities for Development of Injury Prediction Capabilities of Human Body Models ... AAP under review

Future Cars Most Common Injuries in Far-Side Impact - SCP

Pipkorn B, Iraeus J, Lindquist M, Puthan P, Bunketorp O. Occupant Injuries in Light Passenger Vehicles – A NASS Study to Enable Priorities for Development of Injury Prediction Capabilities of Human Body Models ... AAP under review

Future Cars Most Common Injuries in Frontal Impact – Head On

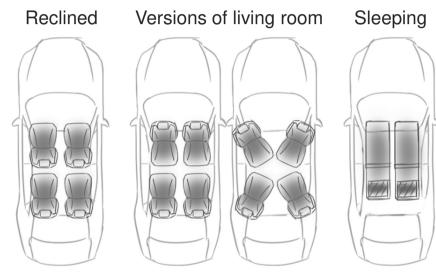
Pipkorn B, Iraeus J, Lindquist M, Puthan P, Bunketorp O. Occupant Injuries in Light Passenger Vehicles – A NASS Study to Enable Priorities for Development of Injury Prediction Capabilities of Human Body Models ... AAP under review

Future Cars Novel occupant compartment designs and seating configurations Identified problems and increased risks Beclined Versions of living room Sleep

Reclined and away from front airbags

- increased head accelerations and neck extensions (no frontal airbag)
- increase risk of submarining
- increased spine forces and pelvis acceleration (contact with seat pan and lap belt)

Rearwards


- increased spine tensions/compression
- lower leg impact to seat pan

Rotated


- occupant might tend to rotate out of the belt restraint depending on which side the seat belt is fixed
- increased head accelerations, rotational velocities, as well as uncontrolled leg kinematics

Sleeping

- uncontrolled kinematics, no body structure to load

EuroNCAP and Human Body Modelling

A combination of physical testing and numerical **Human Body Model** (HBM) simulations is required to demonstrate the suitability of the sensing system for the range of pedestrian sizes; the timing of system deployment; and the bonnet deflection due to body loading.

Euro NCAP is continuing the process to include virtual testing in rating.

Pilot load case for human body evaluation will be selected by October 2019

Human body model simulations will be included in the 2022 upgrade

NHTSA's Federal Automated Vehicles Policy

Table 1: Applicability of Guidance Areas to SAE Level 2-5 Automated Veh	icle
Systems	

Levels of Automation	SAE Levels 3, 4, 5 (HAVs)	SAE Level 2
Safety Assessment Letter to NHTSA	Yes	Yes
C. Cross-Cutting Areas	Fully	Partially
C.1.Data Recording and Sharing	Yes	Yes
C.2 Privacy	Yes	Yes
C.3 System Safety	Yes	Yes
C.4 Vehicle Cybersecurity	Yes	Yes
C.5 Human Machine Interface	Yes	Yes
C.6 Crashworthiness	Yes	Yes
C.7 Consumer Education and Training	Yes	Yes
C.8 Registration and Certification	Yes	Yes
C.9 Post-Crash System Behavior	Yes	Yes
C.10 Federal, State and Local Laws	Yes	Clarify to driver
C.11 Ethical Considerations	Yes	Yes
F. Automation Function ⁴⁷	Fully	Partially
F.1 Operational Design Domain	Yes	No
F.2 Object and Event Detection and Response	Yes	No
F.3 Fall Back (Minimal Risk Condition)	Yes	No
F.4 Validation Methods	Yes	Yes
G. Guidance for Lower Levels of Automated Vehicle Systems	No	Yes

- OEMs "...should exercise and demonstrate due care to provide countermeasures that will fully protect all occupants given any planned seating or interior configurations. ...
- ...The tools to demonstrate such due care need not be limited to physical testing but also could include virtual tests with vehicle and human body models."

Future Development Needs

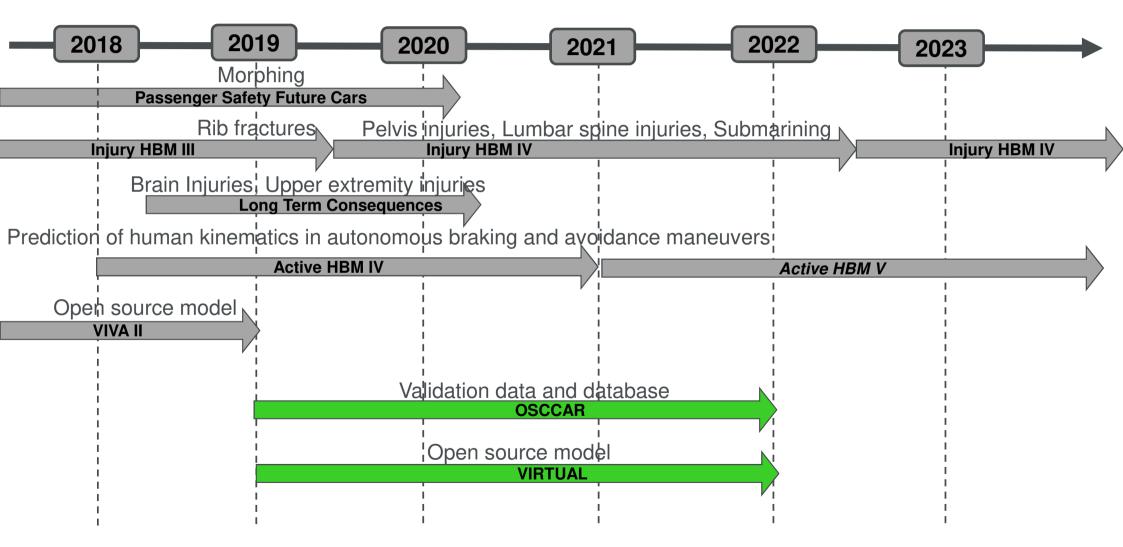
Today's vehicles occupants:

Injuries for elderly and females Concussion Lumbar spine injuries Upper extremity injuries Pelvis injuries

Future vehicles occupant kinematics:

Kinematics for reclined occupants Kinematics for rearwards facing occupants Kinematics for rotated occupants Kinematics for supine (sleeping) occupants

Future vehicles occupant injuries:


Concussion and subdural hematoma Rib and sternum fractures Lumbar spine injuries Pelvis injuries Knee, Ankle & Wrist

Kinematics and injuries for vulnerable road users

Ongoing projects – HBM Development

*OSCCAR - Future Occupant Safety for Crashes in Cars

Each year, Autoliv's products save over 30,000 lives

.....

autoliv.com

100

1111