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~40 000 fatalities 

world wide / year
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WP1 Data Collection
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WP2 Cyclist Braking Behavior 
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Mountain bike (N=8) 

 

Racer bike (N=1) 
Thin tyres,  bockstyre, 
saddle higher than handlebar. 
 

 
City bike (N=6) 
Saddle and handlebar at 
approximately same height, often 
more than 7 gears, seldom foot brake.  

 

Electric bike (N=6) 

 
Comfort bike (N=11) 
often footbrake, seldom more than 7 
gears, handlebar higher than saddle. 
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WP2 Braking Results
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• The average stopping distance is 

almost the same for different bicycle 

types

• There is a large variance in stopping 

distance between cyclists using one 

or two brakes

• The personality, reflected by cyclist 

type, is an important underlying 

factor affecting the stopping distance
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WP3 Improved detector
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• Classifier that detects pedestrians and person riding on bicycle

• Classification based separator that separates pedestrians and 

bicyclists

• Classifier that detects bicycle wheels

• Tracker that combines pedestrian measurements and bicycle 

wheel measurements



Ref: 2016-02522

WP3 Detections
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WP3 Detections
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WP3 Tracking
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EU-NCAP
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WP4 Ellipse extraction
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• A bicycle can be modeled in a state-space that facilitates 

analyzing the cyclist behavior [1]. 

• Fitting Ellipses to the bicycle wheels defines most of the 

state space parameters.

[1] Ardeshiri, Tohid, et al. "Bicycle tracking using 

ellipse extraction." 14th International Conference on 

Information Fusion. IEEE, 2011.
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WP4 Solution
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• We proposed a method to 

detect cyclists and fit 

ellipses to bicycle wheels “in-

the-wild”.

[1] Eldesokey, Abdelrahman et al. “Ellipse Detction for Visual 

Cyclists Analysis “in the Wild”." 17th International Conference 

on Computer Analysis of Images and Patterns (CAIP).
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WP4 Visualization
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WP4 Visualization
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WP5 Cyclist Intention Detection
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Cyclist Intention Signaling

Left arm 

raised

Right 

arm 

raised

Looking 

back

Looking 

sideways

Waiting (at 

stop sign 

or zebra 

crossing)

Stops 

pedaling

No 

action

Foot 

down Foot up

Cyclist 

leaning

Cyclist 

slowing 

down

Cyclist 

standing 

up

9 10 5 21 26 7 2 98 30 7 1 0

Use DNN to

• Gesture recognition Intention interpretation Action prediction
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WP5 Intention by Raised Arm
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We tackle the “in-the-wild” scenario

Varying weather; cyclist pose, scale, and appearance; location; and 

time of the day

Examples of a cyclist gesturing account for a very small subset of 

typical data used for ADAS/AD

We utilize a human keypoint detector (PoseNet) pre-trained on a 

large human keypoint detection dataset

We use a simple Multivariate Normal Classifier (MVN) on top of the 

keypoints, trained on examples mined from Autoliv-data
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WP5 Intention by Looking
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Another cue is whether the cyclist is looking at the car

Using the same data, we train a simple MVN classifier utilizing 

features from a ResNet18 pre-trained on ImageNet

PoseNet seems unable to capture whether the face is turned 

towards us

Instead we rely on features extracted from a ResNet18



Ref: 2016-02522

WP7 So where did we end up?
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Real Life Benefits Estimation
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 ̂WHO, Global status report on road safety 2018, 2018. http://apps.who.int/iris

* N. Lubbe, H. Jeppsson, A. Ranjbar, J. Fredriksson, J. Bärgman, M. Östling, Predicted road traffic fatalities in Germany: the potential and limitations of vehicle safety technologies from passive safety to highly automated driving, (2018) 125–127

 ̂P. Huertas-Leyva, M. Dozza, N. Baldanzini, Investigating cycling kinematics and braking maneuvers in the real world: e-bikes make cyclists move faster, brake harder, and experience new conflicts, Transportation Research Part F: Traffic 

Psychology and Behaviour, Volume 54, 2018, Pages 211-222, ISSN 1369-8478, https://doi.org/10.1016/j.trf.2018.02.008.

* Hubmann, C., Schulz, J., Becker, M., Althoff, D., & Stiller, C. (2018). Automated Driving in Uncertain Environments: Planning With Interaction and Uncertain Maneuver Prediction. IEEE Transactions on Intelligent Vehicles, 3(1), 5–17. 

https://doi.org/10.1109/TIV.2017.2788208

• AEB – cyclist * 
• -M1 vehicle & opponent is a cyclist

- 5 km/h <= own driving speed <= 40 km/h & cyclist speed <= 30 km/h no 
visual obstruction &
- no ice and snow on road & no poor road condition &
- no unstable vehicle condition & fine weather

• Addressing crossing and longitudinal cyclist accidents 

• 22%  reduction in number of fatalities * (GIDAS)

• Improved cyclist detection (WP3) - optimistic estimation ~17%

• Wider FOV

• Better classification of the cyclist and pedestrian

• Resulting in better speed and braking prediction

• Cyclist braking capabilities (WP2) ~10%

• Understand the capabilities of the cyclist in terms of evasive action 
(braking) can be considered to improve the threat assessment

• Understanding the braking capabilities of different type of bicycles ^ 

• Cyclist turning prediction (WP4) ~10%

• Cyclist intention detection (WP5) ~15%
• Intention and interaction models of cyclist can improve tracking of objects in a 

critical situation*
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Thank you for listening!

2019-09-17 20


