Your browser doesn't support javascript. This means that the content or functionality of our website will be limited or unavailable. If you need more information about Vinnova, please contact us.

Our e-services for applications, projects and assessments close on Thursday 25 April at 4:30pm because of system upgrades. We expect to open them again on Friday 26 April at 8am the latest.

Fighting Multiple Sclerosis with Mathematics

Reference number
Coordinator Karolinska Institutet - Institutionen för medicin, Solna
Funding from Vinnova SEK 1 473 261
Project duration January 2014 - May 2017
Status Completed

Purpose and goal

By developing mathematical models of MS at the systems level, bridging molecular process to clinical phenotype, this project will generate novel insights into the processes leading to MS development. This project aims to develop and apply computational methods enabling integration between molecular data and clinical readouts in order to generate experimentally testable predictions. Our findings may capture key steps and central players in MS that may lead to pinpoint novel Anti-MS drugs targets and ultimately contribute to improving the life quality of patients.

Expected results and effects

We have implemented 3 types of mathematical models of MS, at different level. The most comprehensive one which connect clinical data to the molecular process enable us to gain insights into the dynamic behavior of MS development. We have found phenotypic ‘omics’ signature of MS. These ‘omics’ signatures will help to understand the molecular mechanisms underpinning prognosis and response to therapy of individuals suffering from MS. Using these signatures and our experimentally tested model , we could formally describe the interactions comprising the clinical phenotype of MS.

Planned approach and implementation

We have applied and developed probabilistic machine learning bioinformatics tools, and differential equation models (ODE). The methods and their application in the current project holds promise to be used in other disease areas as well where there are similar challenges in terms of a gap between rich molecular data and the clinical description of patients and difficulties in prognosis and selection of therapy.

The project description has been provided by the project members themselves and the text has not been looked at by our editors.

Last updated 11 February 2019

Reference number 2013-04409

Page statistics